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THIS CLASS:
ORGAN EXCHANGE
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KIDNEY TRANSPLANTATION
• US waitlist: over 100,000

• Over 35,000 added per year
• ~4500 people died while waiting
• ~12000 people received a kidney

from the deceased donor waitlist
• (See last class’ lecture on deceased donor allocation.)

• ~6000 people received a kidney from a living donor
• Some through kidney exchanges!
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[Roth et al. 2004]

3

Last time, 
I promise!
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NON-DIRECTED DONORS & CHAINS

Not executed simultaneously, so no length cap required based on 
logistic concerns …

… but in practice edges fail, so often some finite cap is used!
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[Rees et al. 2009]
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THE CLEARING PROBLEM

The clearing problem is to find the “best” disjoint set of 
cycles of length at most L, and chains (maybe with a cap K)

• Very hard combinatorial optimization problem that we will 
focus on in the succeeding two lectures.
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MANAGING INCENTIVES
Clearinghouse cares about global welfare:

• How many patients received kidneys (over time)?

Transplant centers care about their individual welfare:
• How many of my own patients received kidneys?

Patient-donor pairs care about their individual welfare:
• Did I receive a kidney?
• (Most work considers just clearinghouse and centers)
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INDIVIDUAL 
RATIONALITY (IR)

Long-term IR: 
• In the long run, a center will receive at least the same number 

of matches by participating
Short-term IR:

• At each time period, a center receives at least the same 
number of matches by participating

Will I be better off participating in the 
mechanism than I would be otherwise?
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STRATEGY 
PROOFNESS

In any state of the world …
• { time period, past performance, competitors’ strategies, 

current private type, etc }
… a center is not worse off reporting its full private set of 
pairs and altruists than reporting any other subset

Do I have any reason to lie to the 
mechanism?

à No reason to strategize
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EFFICIENCY

Efficiency:
• Produces a maximum (i.e., max global social welfare) 

matching given all pairs, regardless of revelation
IR-Efficiency:

• Produces a maximum matching constrained by short-term 
individual rationality

Does the mechanism result in the absolute 
best possible solution?
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PRIVATE VS GLOBAL 
MATCHING
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FIRST: ONLY CYCLES (NO CHAINS)
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THE BASIC KIDNEY 
EXCHANGE GAME
Set of n transplant centers Tn = {t1 ... tn}, each with a set of 

incompatible pairs Vh

Union of these individual sets is V, which induces the 
underlying compatibility graph

Want: all centers to participate, submit full set of pairs

An allocation M is k-maximal if there is no allocation M' that 
matches all the vertices in M and also more
• Note: k-efficient à k-maximal, but not vice versa

[Ashlagi & Roth 2014, and earlier] 
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INDIVIDUALLY RATIONAL?
• Vertices a1, a2 belong to center a, 

b1, b2 belong to center b
• Center a could match 2 internally
• By participating, matches only 1 of its own
• Entire exchange matches 3 (otherwise only 2)

[Ashlagi & Roth 2014, and earlier] 

b1 b2

a2a1

Center b

Center a
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IT CAN GET MUCH WORSE

• Bound is tight

• All but one of a's vertices is part 
of another length k exchange 
(from different agents)

• k-maximal and IR if a matches his 
k vertices (but then nobody else 
matches, so k total)

• k-efficient to match (k-1)*k

[Ashlagi & Roth 2014, and earlier] 

Theorem: For k>2, there exists G s.t. no IR k-
maximal mechanism matches more than 1/(k-1)-
fraction of those matched by k-efficient allocation

Example: k=3 16



RESTRICTION #1

Proof sketch: construct k-efficient allocation for each 
specific hospital's pool Vh

Repeatedly search for larger cardinality matching in an entire 
pool that keeps all already-matched vertices matched (using 
augmenting matching algorithm from Edmonds)
Once exhausted, done
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Theorem: For all k and all compatibility graphs, 
there exists an IR k-maximal allocation

[Ashlagi & Roth 2014, and earlier] 



RESTRICTION #2

Idea: Every 2-maximal allocation is also 2-efficient
• This is a PTIME problem with, e.g., a standard O(|V|3) bipartite 

augmenting paths matching algorithm

By Restriction #1, 2-maximal IR always exists à this 2-
efficient IR always exists
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[Ashlagi & Roth 2014, and earlier] 

Theorem: For k=2, there exists an IR 2-efficient 
allocation in every compatibility graph



RESTRICTION #3

Suppose mechanism is IR and maximal . . .

[Ashlagi et al. 2015] 

Theorem: No IR mechanism is both maximal and 
strategyproof (even for k=2)
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MORE NEGATIVE MECHANISM 
DESIGN RESULTS
Just showed IR + strategyproof à not maximal
No IR + strategyproof mechanism can guarantee more than 
½-fraction of efficient allocation
• Idea: same counterexample, note either the # matched for 

hospital a < 3, or # matched for hospital b < 2.  Proof by cases 
follows

No IR + strategyproof randomized mechanism can guarantee 
7/8-fraction of efficiency
• Idea: same counterexample, bounds on the expected size of 

matchings for hospitals a, b

[Ashlagi et al. 2015] 
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HOPELESS …?
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DYNAMIC, CREDIT-
BASED MECHANISM
Repeated game
Centers are risk neutral, self interested
Transplant centers have (private) sets of pairs:

• Maximum capacity of 2ki
• General arrival distribution, mean rate is ki
• Exist for one time period

Centers reveal subset of their pairs at each time period, can 
match others internally

[Hajaj et al. AAAI-2015]
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CREDITS
Clearinghouse maintains a credit balance ci for each 
transplant center over time
High level idea:

• REDUCE ci: center i reveals fewer than expected
• INCREASE ci: center i reveals more than expected

• REDUCE ci: mechanism tiebreaks in center i’s favor
• INCREASE ci: mechanism tiebreaks against center I

Also remove centers who misbehave “too much.”

Credits now à matches in the future
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THE DYNAMIC MECHANISM
1. Initial credit update

• Centers reveal pairs
• Mechanism updates credits according to ki

2. Compute maximum global matching
• Gives the utility Ug of a max matching

3. Selection of a final matching
• Constrained to those matchings of utility Ug

• Take ci into account to (dis)favor utility given by matching to a 
specific center i

• Update ci based on this round’s (dis)favoring
4. Removal phase if center is negative for “too long”
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THEORETICAL 
GUARANTEES

Theorem: No mechanism that supports cycles 
and chains can be both long-term IR and 

efficient

Theorem: Under reasonable assumptions, the 
prior mechanism is both long-term IR and 

efficient
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LOTS OF OPEN 
PROBLEMS HERE
Dynamic mechanisms are more realistic, but …
• Vertices disappear after one time period

• All hospitals the same size

• No weights on edges

• No uncertainty on edges or vertices
• Upper bound on number of vertices per hospital

• Distribution might change over time

• ...
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Project?



WHAT DO EFFICIENT MATCHINGS 
EVEN LOOK LIKE …?
Next class: given a specific graph, what is the “optimal 
matching”
This class: given a family of graphs, what do ”optimal 
matchings” tend to look like?
Use a stylized random graph model, like [Saidman et al. 2006]:

• Patient and donor are drawn with blood types randomly 
selected from PDF of blood types (roughly mimics US 
makeup), randomized “high” or “low” CPRA

• Edge exists between pairs if candidate and donor are ABO-
compatible and tissue type compatible (random roll weighted 
by CPRA)
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RANDOM GRAPH PRIMER
Canonical Erdős-Rényi random graph G(m,p) has m vertices and 
an (undirected) edge between two vertices with probability p
• Let Q be the property of “there exists a perfect matching” in this 

graph
The convergence rate to 1 (i.e., “there is almost certainly a near 
perfect matching in this graph) is exponential in p
• Pr(G(m,m,p) satisfies Q) = 1 – o(2-mp)
• At least as strong with non-bipartite random graphs

Early random graph results in kidney exchange are for “in the 
large” random graphs that (allegedly) mimic the real 
compatibility graphs
• All models are wrong, but some are useful?
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A STYLIZED ERDŐS-RÉNYI-STYLE 
MODEL OF KIDNEY EXCHANGE
In these random (ABO- & PRA-) graphs:

• # of O-{A, B, AB} pairs > {A, B, AB}-O pairs
• # of {A, B}-AB pairs > AB-{A, B} pairs
• Constant difference between # A-B and # B-A

Idea #1: O-candidates are hard to self-match
Idea #2: {A, B}-candidates are hard to self-match
Idea #3: “symmetry” between A-B and B-A (equally hard to 
self-match, give or take)  
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EFFICIENT MATCHING IN DENSE 
GRAPHS WITH ONLY CYCLES
Under some other assumptions about PRA …
Almost every large random (ABO- & PRA-) graph has an 
efficient allocation that requires exchanges of size at most 3 
with the following:

• X-X pairs are matched in 2- or 3-way exchanges with other X-
X pairs (so-called “self-demand”)

• B-A pairs are 2-matched with A-B pairs
• The leftovers of {A-B or B-A} are 3-matched with “good” {O-A, 

O-B} pairs and {O-B, O-A pairs}
• 3-matches with {AB-O, O-A, A-AB}
• All the remaining 2-matched as {O-X, X-O}
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VISUALLY …
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NEXT CLASS:
OPTIMAL BATCH CLEARING OF ORGAN 

EXCHANGES
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