
APPLIED MECHANISM
DESIGN FOR SOCIAL GOOD
JOHN P DICKERSON

Lecture #19 – 04/14/2020

CMSC828M
Tuesdays & Thursdays
2:00pm – 3:15pm

THE CLEARING PROBLEM

The clearing problem is to find the “best” disjoint set of
cycles of length at most L, and chains

• Typically, 2 ≤ L ≤ 5 for kidneys (e.g., L=3 at UNOS)
• NP-hard (for L>2) in theory, really hard in practice

[Abraham et al. 07, Biro et al. 09]

[Glorie et al. 2014,
Anderson et al. 2015,
Plaut et al. 2016,
Dickerson et al. 2016 ...] 2

SPECIAL CASE: L = 2
PTIME: translate to maximum matching on undirected graph

3

v1 v3v2 v4

v5v6

(Six pairs, no altruists.)
???????????????

v1 v3v2 v4

v5v6

v1 v3v2 v4

v5v6

v1 v3v2 v4

v5v6

SPECIAL CASE: L = ∞
PTIME via formulation as maximum weight perfect matching

4

v1 v3v2 v4

v5v6

(Six pairs, no altruists.)
???????????????

v1 v3v2 v4

v5v6

d1 d2 d3 d4 d5 d6Donors:

p1 p2 p3 p4 p5 p6Patients:

Edge weights:

= 0

= we

GENERAL CASE: L = ?
NP-hard via reduction from 3D-matching:
• Given disjoint sets X, Y, Z of size q …
• ... and a set of triples T ⊆ X x Y x Z ...
• ... is there a disjoint subset M ⊆ T of size q?

5

1

2

3

1

2

3

1

2

3

T = {
(1,1,1),
(2,3,2),
(1,2,1),
(3,2,3),

}

??????????????

GENERAL CASE: L = ?
Construct a gadget for each ti = {xa, yb, zc} in T
• Gadgets intersect only on vertices in X ⋃ Y ⋃ Z

6

xai ybi zci

1 2 L-1

xa

1 2 L-1

yb

1 2 L-1

zc

GENERAL CASE: L = ?
M is perfect matching à construction has perfect cycle cover.
For ti in T:

7

xai ybi zci

1 2 L-1

xa

1 2 L-1

yb

1 2 L-1

zc

GENERAL CASE: L = ?
M is perfect matching à construction has perfect cycle cover.
For ti not in T:

8

xa yb zc

xai

1 2 L-1

ybi

1 2 L-1

zci

1 2 L-1

GENERAL CASE: L = ?
We have a perfect cycle cover à M is a perfect 3D matching
• Construction only has 3-cycles and L-cycles
• Short cycles (i.e., 3-cycles) are disjoint from the rest of the

graph by construction
Thus, given a perfect cover (by assumption):
• Widgets either contribute according to ti in M …
• … or ti not in M.
Thus there is a perfect matching in the original 3D matching
instance.

9

HOPELESS …?

10

BASIC APPROACH #1:
THE EDGE FORMULATION

Binary variable xij for each edge from i to j

Maximize
u(M) = Σ wij xij

Subject to
Σj xij = Σj xji for each vertex i
Σj xij ≤ 1 for each vertex i

Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1)

(no path of length L that doesn’t end where it started – cycle cap)

[Abraham et al. 2007]

Flow constraint

12

STATE OF THE ART FOR
EDGE FORMULATION
Builds on the prize-collecting traveling salesperson problem [Balas
Networks-89]

• PC-TSP: visit each city (patient-donor pair) exactly once, but with
the additional option to pay some penalty to skip a city (penalized
for leaving pairs unmatched)

They maintain decision variables for all cycles of length at most L,
but build chains in the final solution from decision variables
associated with individual edges
Then, an exponential number of constraints could be required to
prevent the solver from including chains of length greater than K;
these are generated incrementally until optimality is proved.

• Leverage cut generation from PC-TSP literature to provide stronger
(i.e. tighter) IP formulation

[Anderson et al. PNAS-2015]

13

BEST EDGE FORMULATION
[Anderson et al. 2015]

A

A

A

V

If: flow into v from a chain
Then: at least as much flow
across cuts from {A}

C1

C2

C3

…

Ck

14

Binary variable xc for each feasible cycle or chain c

Maximize
u(M) = Σ wc xc

Subject to
Σc : i in c xc ≤ 1 for each vertex i

[Roth et al. 2004, 2005,
Abraham et al. 2007]

BASIC APPROACH #2:
THE CYCLE FORMULATION

15

SOLVING THE CYCLE
FORMULATION IP
Too large to write down
• O(max{ |P|L, |A||P|K-1 }) variables
• |A| = 5, |V|=300, L=3, K=20 … |A||P|K-1 ≈ 5 x 1047

Approach: branch-and-price [Barnhart et al. 1998]:
• Branch: select fractional column and fix its value to 1 and 0

respectively

• Fathom the search node if no better than incumbent
• Solve LP relaxation using column generation

x7

x4

1 0

1 0

… …
…

16

COLUMN GENERATION
Master LP P has too many variables
• Won’t fit in memory, and/or would take too long to solve

Begin with restricted LP P’, which contains only a small
subset of the variables (i.e., cycles)
• OPT(P’) ≤ OPT(P)

Solve P’ and, if necessary, add more variables to it
• We do this intelligently by solving the pricing problem

Repeat until OPT(P’) = OPT(P)

17

DFS TO SOLVE
PRICING PROBLEM
Pricing problem:

• Optimal dual solution π* to reduced model
• Find non-basic variables with positive price (for a

maximization problem)
• 0 < weight of cycle – sum of duals in π* of constituent vertices
• Positive price for cycle à dual constraint is violated
• No positive price cycles à no dual constraints violated

First approach [Abraham et al. EC-2007] explicitly prices all
feasible cycles and chains through a DFS

• Can speed this up in various ways, but proving no positive
price cycles exist still takes a long time

[Abraham et al. EC-07]

18

GENERAL PRICING OF CYCLES &
CHAINS IS NP-HARD
Reduce from Hamiltonian path

19

[Plaut et al. arXiv:1606.00117]

v1 v2 vn

a

�1

. . .

�1

�1

n� 2 n� 2 n� 2

Arbitrary
graph G

COMPARISON
Tradeoffs in number of variables, constraints

• IP #1: O(|E|L) constraints vs. O(|V|) for IP #2
• IP #1: O(|V|2) variables vs. O(|V|L) for IP #2

IP #2’s relaxation is weakly tighter than #1’s. Quick intuition
in one direction:

• Take a length L+1 cycle. #2’s LP relaxation is 0.
• #1’s LP relaxation is (L+1)/2 – with ½ on each edge

Recent work focuses on balancing tight LP relaxations and
model size [Constantino et al. 2013, Glorie et al. 2014, Klimentova et al. 2014, Alvelos et
al. 2015, Anderson et al. 2015, Mak-Hau 2015, Manlove&O’Malley 2015, Plaut et al. 2016, …]:

• Newest work: compact formulations, some with tightest
relaxations known, all amenable to failure-aware matching

20

COMPACT
FORMULATIONS
Previous models: exponential #constraints (CG methods)

or #variables (B&P methods)
Let F be upper bound on #cycles in a final matching
Create F copies of compatibility graph
Search for a single cycle or chain in each copy

• (Keep cycles/chains disjoint across graphs)

[Constantino et al. EJOR-14]

21

1A: max edge weights over all graph copies
1B: give a kidney <-> get a kidney within that copy
1C: only use a vertex once
1D: cycle cap

maximize
X

f

X

(i,j)2A

wijx
f
ij

subject to
X

j:(j,i)2A

xf
ij =

X

j:(i,j)2A

xf
ij 8i 2 V, 8f 2 {1, . . . , F}

X

f

X

j:(i,j)2A

xf
ij  1 8i 2 V

X

(i,j)2A

xf
ij  k 8f 2 {1, . . . , F}

xf
ij 2 {0, 1} 8(i, j) 2 A, 8f 2 {1, . . . , F}

1A

1B

1C

1D

1E

xf
ij =

⇢
1 if arc (i, j) is selected to be in copy f of the graph,
0 otherwise

COMPACT FORMULATIONS

22

Polynomial #constraints and
#variables!

PIEF: A COMPACT MODEL
FOR CYCLES ONLY
Builds on Extended Edge Formulation of Constantino et al.
• O(|V|) copies of graph, 1 binary variable per edge per copy
• Enforce at most one cycle per graph copy used
• Track positions of edges in cycles for LP tightness

The tightest known non-compact LP relaxation
ZCF = ZPIEF

(disallowing chains)

T
H
E
O
R
E
M

(EC-16 paper also presents HPIEF, which is a compact
formulation for cycles and chains, but with weaker ZHPIEF)

23

[Dickerson Manlove Plaut Sandholm Trimble EC-16]

PICEF: POSITION-INDEXED
CHAIN-EDGE FORMULATION
In practice, cycle cap L is small and chain cap K is large
Idea: enumerate all cycles but not all chains [Anderson et al. 2015]

• That work required O(|V|K) constraints in the worst case
• This work requires O(K|V|) = O(|V|2) constraints

Track not just if an edge is used in a chain, but
where in a chain an edge is used.

M
A
I
N

I
D
E
A

For edge (i,j) in graph: K’(i,j) = {1} if i is an altruist
K’(i,j) = {2, …, K} if i is a pair

24

PICEF: POSITION-INDEXED
CHAIN-EDGE FORMULATION
Maximize

u(M) = Σij in E Σk in K’(i,j) wij yijk + Σc in C wc zc

Subject to
Σij in E Σk in K’(i,j) yijk + Σc : i in c zc ≤ 1 for every i in Pairs

Each pair can be in at most one chain or cycle

Σij in E yij1 ≤ 1 for every i in Altruists

Each altruist can trigger at most one chain via outgoing edge at position 1

Σj:ij in E yijk+1 - Σj:ji in E ⌃ k in K’(j,i) yjik ≤ 0 for every i in Pairs
and k in {1, …, K-1}

Each pair can be have an outgoing edge at position k+1 in a chain iff it
has an incoming edge at position k in a chain 25

WHAT IF THERE ARE STILL
TOO MANY VARIABLES?
In particularly dense graphs or if, in the future, longer cycle
caps are allowed, PICEF may need too many cycle variables
Solve via branch and price by storing only a subset of
columns in memory, then solving pricing problem
• Search for variables with positive price, bring into model

• Previously: that search is exponential in chain cap [Abraham et al.
2007, Glorie et al. 2014, Plaut et al. 2016]

• General: pricing chains & cycle is NP-hard [arXiv:1606.00117]

But we only need to price cycles, not chains!

PICEF is the first branch-and-price-based model with
provably correct polynomial-time pricing

P
R
I
C
I
N
G 26

POLYNOMIAL-TIME
CYCLE PRICING
Solve a structured problem that implicitly prices variables
• Variable = xc for cycle (not chain) c
• Price of xc = wc – Σv in c δv

Example
• Price: (2+3+2) – (δP1+δP2+δP3)

= Σe in c we – Σv in c δv
= Σ(u,v) in c [w(u,v) – δv]

Idea: Take G, create G’ s.t. all edges e = (u,v) are reweighted
r(u,v) = δv – w(u,v)

• Positive price cycles in G = negative weight cycles in G’

P1

P2 P3

2 2

3wc

[Glorie et al. MSOM-2014, Plaut et al. AAAI-2016]

27

ADAPTED BELLMAN-FORD
PRICING FOR CYCLES ONLY
Bellman-Ford finds shortest paths
• Undefined in graphs with negative weight
• Adapt B-F to prevent internal looping during the traversal

• Shortest path is NP-hard (reduce from Hamiltonian path):
• Set edge weights to -1, given edge (u,v) in E, ask if shortest

path from u to v is weight 1-|V| à visits each vertex exactly
once

• We only need some short path (or proof that no negative
cycle exists)

• Now pricing runs in time O(|V||E|L2)

[Glorie et al. MSOM-2014, Plaut et al. AAAI-2016]

28

HOW DO ALL THESE MODELS
PERFORM IN PRACTICE?

Test on real and simulated match runs from:
• US UNOS exchange: 143+ transplant centers
• UK NLDKSS: 20 transplant centers

Following are tests against actual code for:
• BnP-DFS [Abraham et al. EC-07]

• BnP-Poly [Glorie et al. MSOM-14, Plaut et al. AAAI-16]

• CG-TSP [Anderson et al. PNAS-15]

29

REAL MATCH RUNS
UNOS & NLDKSS

30

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

0

600

1200

1800

2400

3000

3600

M
ea

n
tim

e
(s

)

Individual NLDKSS match runs
BNP-DFS
HPIEF
PICEF
BNP-PICEF
BNP-POLY

CG-TSP

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

0

20

40

60

80

100

120

M
ea

n
tim

e
(s

)

Individual UNOS match runs
BNP-DFS
HPIEF
PICEF
BNP-PICEF
BNP-POLY

CG-TSP

UNOS: 286 match runs NLDKSS: 17 match runs

31

GENERATED DATA
|P|=700, INCREASING %ALTRUISTS

32

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 7
HPIEF
PICEF
BNP-PICEF
BNP-POLY

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 14

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 35

2 3 4 5 6 7 8 9 10 11 12

Chain length cap

|P | = 700, |N | = 175

Solvers that are not shown timed out (within one-hour period).

33

THE BIG PROBLEM
What is “best”?
• Maximize matches right now or over time?

• Maximize transplants or matches?

• Prioritization schemes (i.e. fairness)?
• Modeling choices?

• Incentives? Ethics? Legality?

Optimization can handle this, but may be inflexible in
hard-to-understand ways (for humans)

Want humans in the loop at a high level
(and then CS/Opt handles the implementation)

34

MANAGING SHORT-TERM
UNCERTAINTY
[EC-13, EC-15, EC-16, Management Science to appear]
With A. Blum, N. Haghtalab, D. Manlove, B. Plaut, A. Procaccia, T. Sandholm, A. Sharma, J. Trimble

35

MATCHED ≠ TRANSPLANTED

Only around 10-15% of UNOS matched structures
result in an actual transplant
• Similarly low % in other exchanges [ATC 2013]

Many reasons for this. How to handle?

One way: encode probability of transplantation
rather than just feasibility
• for individuals, cycles, chains, and full matchings

36

FAILURE-AWARE MODEL
Compatibility graph G

• Edge (vi, vj) if vi’s donor can donate to vj’s patient
• Weight we on each edge e

Success probability qe for each edge e

Discounted utility of cycle c
u(c) = ∑we � ∏qe

Value of successful cycle Probability of success

37

FAILURE-AWARE MODEL
Discounted utility of a k-chain c

Cannot simply “reweight by failure probability”

Exactly first i transplants Chain executes in entirety

38

A 1 2 3 4
q1 q2 q3 q4

1q1(1-q2)… + 2q1q2(1-q3)… + 3q1q2q3(1-q4)… + 4q1q2q3q4

DISCOUNTED CLEARING
PROBLEM

Find matching M* with highest discounted utility

1 2

3
Maximum cardinality Maximum expected transplants

(“Best” = max expected cardinality | limited recourse)

0.1 0.1

0.9

0.9

39

Practice: Solved via branch-and-price
• One binary decision variable per cycle/chain
• Upper-bounding is now NP-hard
• Pricing problem is (empirically) much easier

Maybe this is
a good idea …

SOLVING THIS NEW PROBLEM
Theorem:
In a sparse random graph model, for any failure probability p, w.h.p.
there exists a matching that is “linearly better” than any max-
cardinality matching

40

UNOS
2010-2014

Oct. 2010 Late 2014

0 20 40 60 80 100 120 140 160

UNOS Match Run
0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
xp

ec
te

d
Tr

an
sp

la
nt

s
All UNOS match runs (constant)

Probabilistic
Current

0 20 40 60 80 100 120 140 160

UNOS Match Run
0

2

4

6

8

10

12

E
xp

ec
te

d
Tr

an
sp

la
nt

s

All UNOS match runs (bimodal)
Probabilistic
Current

Under discussion for implementation at UNOS

42

PRE-MATCH EDGE TESTING

Idea: perform a small amount of costly testing before a match
run to test for (non)existence of edges
• E.g., more extensive medical testing, donor interviews,

surgeon interviews, …

Cast as a stochastic matching problem:

Given a graph G(V,E), choose subset of edges S such that:

|M(S)| ≥ (1-ε) |M(E)|

Need: “sparse” S, where every vertex has O(1) incident tested edges

43

GENERAL THEORETICAL
RESULTS

Stochastic matching:
(1-ε) approximation with Oε(1) queries per vertex, in Oε(1) rounds

Stochastic k-set packing:
(2/k – ε) approximation with Oε(1) queries per vertex, in Oε(1) rounds

Adaptive: select one edge per vertex per round, test, repeat

Non-adaptive: select O(1) edges per vertex, test all at once

Stochastic matching:
(0.5-ε) approximation with Oε(1) queries per vertex, in 1 round

Stochastic k-set packing:
(2/k – ε)2 approximation with Oε(1) queries per vertex, in 1 round

T
H
E
O
R
E
M

T
H
E
O
R
E
M

44

ADAPTIVE ALGORITHM

r Base graph Matching picked Result of queries

1:

2:

Input Graph

45

For R rounds, do:
1. Pick a max-cardinality matching M in graph G,

minus already-queried edges that do not exist
2. Query all edges in M

INTUITION FOR
ADAPTIVE ALGORITHM
If at any round r, the best solution on edges queried so far is
small relative to omniscient …

• ... then current structrure admits large number of unqueried,
disjoint augmenting structures

• For k=2, aka normal matching, simply augmenting paths
Augmenting structures might not exist, but can query in
parallel in a single round

• Structures are constant size à exist with constant probability
• Structures are disjoint à queries are independent
• à Close a constant gap per round

46

UNOS DATA

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2- and 3-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Even 1 or 2 extra tests would result in a huge lift

At p=0.5, one edge test
per vertex à +21% OPT

47

In theory and practice, we’re helping the
global bottom line by considering post-
match failure …

… But can this hurt some individuals?

48

BALANCING EQUITY
AND EFFICIENCY
[AAMAS-14, AAAI-15, AAAI-18, Invited to AIJ, u.r. 2018]
With D. McElfresh, A. Procaccia and T. Sandholm

49

0 20 40 60 80 100 120 140 160

Match Run
0

50

100

150

200

250

300

Po
ol

S
iz

e

Sensitization in the UNOS Exchange

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.S
en

si
tiz

ed

Sensitized Pairs
Normal Pairs
Altruistic Donors
Fraction Sensitized

SENSITIZATION AT UNOS

Highly-sensitized patients: unlikely to be compatible
with a random donor

• Deceased donor
waitlist: 17%

• Kidney exchanges:
much higher (60%+)

“Hard to match” patients

“Easy to match” patients

50

PRICE OF FAIRNESS
Efficiency vs. fairness:
• Utilitarian objectives may favor certain classes at
the expense of marginalizing others

• Fair objectives may sacrifice efficiency in the name
of egalitarianism

Price of fairness: relative system efficiency loss
under a fair allocation [Bertismas, Farias, Trichakis 2011]

[Caragiannis et al. 2009]

51

PRICE OF FAIRNESS
IN KIDNEY EXCHANGE

Want a matching that maximizes
utility function

Price of fairness: relative loss of match
efficiency due to fair utility function :

𝑢:ℳ → ℝ

𝑀∗ = argmax
"∈ℳ

𝑢(𝑀)

𝑃𝑂𝐹 ℳ, 𝑢% =
𝑢 𝑀∗ − 𝑢(𝑀%∗)

𝑢(𝑀∗)

𝑀∗

𝑢$

52

FROM THEORY TO
PRACTICE
We show that the price of fairness is low in theory

Fairness criterion: extremely strict.
Theoretical assumptions (standard):
• Big, dense graphs (“n à ∞”)
• Cycles (no chains)

• No post-match failures

• Simplified patient-donor features

What about the price of fairness in practice?

𝑃𝑂𝐹 ℳ, 𝑢%≻' ≤ ,2 33

53

TOWARD USABLE
FAIRNESS RULES
In healthcare, important to work within (or near to)
the constraints of the fielded system
• [Bertsimas, Farias, Trichakis 2013]
• Our experience with UNOS

We now present two (simple, intuitive) rules:
• Lexicographic: strict ordering over vertex types

• Weighted: implementation of “priority points”

54

LEXICOGRAPHIC FAIRNESS

Matching-wide constraint:
• Present-day branch-and-price IP solvers rely on an
“easy” way to solve the pricing problem

• Lexicographic constraints à
pricing problem requires an IP solve, too!

Strong guarantee on match composition …
• … but harder to predict effect on economic efficiency

Find the best match that includes at least α
fraction of highly-sensitized patients

55

WEIGHTED FAIRNESS

Re-weighting is a preprocess à
works with all present-day exchange solvers

Difficult to find a “good” β?
• Empirical exploration helps strike a balance

Value matching a highly-sensitized patient at
(1+β) that of a lowly-sensitized patient, β>0

56

UNOS MATCH RUNS
WEIGHTED FAIRNESS, VARYING FAILURE RATES

57

2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

Num. Matched (Sensitized)

9.3

9.4

9.5

9.6

9.7

9.8

9.9
N

um
.M

at
ch

ed
(T

ot
al

)

+0.0 +0.05

+0.7

+2.05

+3.0

Pareto Frontier (No Failure Prob)

0.20 0.22 0.24 0.26 0.28 0.30 0.32

Exp. Transplants (Sensitized)

0.80

0.82

0.84

0.86

0.88
E

xp
.T

ra
ns

pl
an

ts
(T

ot
al

) +0.0 +0.05
+0.3

+0.85

+3.7
+9.7

Pareto Frontier (Constant Failure Prob.)

0.35 0.40 0.45 0.50 0.55 0.60 0.65

Exp. Transplants (Sensitized)
2.20

2.25

2.30

2.35

2.40

2.45

E
xp

.T
ra

ns
pl

an
ts

(T
ot

al
)

+0.0
+0.25

+1.0

+2.5

+5.0

+9.0

Pareto Frontier (Bimodal Failure Prob.)

58

CONTRADICTORY GOALS
Earlier, we saw failure-aware matching results in tremendous
gains in #expected transplants
Gain comes at a price – may further marginalize hard-to-
match patients because:

• Highly-sensitized patients tend to be matched in chains
• Highly-sensitized patients may have higher failure rates (in

APD data, not in UNOS data)

59

UNOS runs, weighted fairness, constant probability of failure (x-axis),
increase in expected transplants over deterministic matching (y-axis)

0.0 0.2 0.4 0.6 0.8 1.0

Failure Probability
-10%

-5%

0%

+5%

+10%

+15%

+20%

+25%

+30%

E
xp

ec
te

d
Tr

an
sp

la
nt

s

UNOS Individual Matches (Constant)
Failure-Aware
Max Cardinality
Ø = 1

Ø = 2

Ø = 5

Ø = 10

Be
at

s
ef

fic
ie

nt
 d

et
er

m
in

is
tic

60

Fairness vs. efficiency can be balanced in
theory and in practice in a static model …

… But how should we match over time?

61

LEARNING TO MATCH IN A
DYNAMIC ENVIRONMENT
[AAAI-12, AAAI-15, NIPS-15 MLHC, w.p. 2018]
With A. Procaccia and T. Sandholm

62

DYNAMIC KIDNEY EXCHANGE
Kidney exchange is a naturally dynamic event
Can be described by the evolution of its graph
• Additions, removals of edges and vertices

Vertex Removal Edge Removal Vertex/Edge Add
Transplant, this exchange Matched, positive crossmatch Normal entrance
Transplant, deceased donor
waitlist Matched, candidate refuses donor
Transplant, other exchange
("sniped") Matched, donor refuses candidate

Death or illness
Pregnancy, sickness changes
HLA

Altruist runs out of patience
Bridge donor reneges

How should we balance matching now versus waiting to match? 63

FUTUREMATCH: LEARNING TO MATCH IN
DYNAMIC ENVIRONMENTS

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

1. Domain expert describes overall goal
2. Take historical data and policy input to learn a weight function w for match

quality
3. Take historical data and create a graph generator with edge weights set by w
4. Using this generator and a realistic exchange simulator, learn potentials for

graph elements as a function of the exchange dynamics

Offline (run once or periodically)

1. Combine w and potentials to form new edge weights on real input graphs
2. Solve maximum weighted matching and return match

Online (run every match)

64

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

Example objective (MaxLife)
• Maximize aggregate length of time donor organs last in patients …

– … possibly subject to prioritization
schemes, fairness, etc …

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Graft survival (days)
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

.g
ra

ft
su

cc
es

s
af

te
rn

da
ys

Perfect HLA Match vs. Mismatch
Perfect HLA Match
HLA Mismatch

• Learn survival rates from all living
donations since 1987

• ~75,000 transplants
• Translate to edge weight

Imperfect HLA match
has worse survival rate than

perfect HLA match

65

300+ match runs with real UNOS data
Important to use realistic distribution

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

UNOS
(first match run)

UNOS
(recent snapshot) 66

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

Exit:

Enter:

Tr
an

sp
la

nt
su

cc
es

s,
or

ill
ne

ss
,d

ea
th

,s
ni

pe
d,

do
no

r
re

ne
ge

d,
et

c.
..

Tr
an

sp
la

nt
su

cc
es

s,
or

ill
ne

ss
,d

ea
th

,s
ni

pe
d,

do
no

r
re

ne
ge

d,
et

c.
..

Tr
an

sp
la

nt
su

cc
es

s,
or

ill
ne

ss
,d

ea
th

,s
ni

pe
d,

do
no

r
re

ne
ge

d,
et

c.
..

Matched, awaiting transplant Matched, awaiting transplant

· · · Poolt Unmatched Poolt+1 Unmatched Poolt+2 · · ·

New pairs & altruists New pairs & altruists

67

Full optimization problem is very difficult
• Realistic theory is too complex

• Trajectory-based methods do not scale

Approximation idea:
• Associate with each “element type” its potential to help objective in

the future
• (Must learn these potentials)

• Combine potentials with edge weights, perform myopic maximum
utility matching

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

68

What is a potential?

Given a set of features Θ representing structural elements (e.g., vertex, edge,
subgraph type) of a problem:

• The potential Pθ for a type θ quantifies the future usefulness of that element

E.g., let Θ = {O-O, O-A, …, AB-AB, �-O, …, �-AB}

• 16 patient-donor types, 4 altruist types

• O-donors better than A-donors, so: P�-O > P�-A

Heavy one-time computation to learn potential of each type θ – we use SMAC
[Hutter Hoos Leyton-Brown 2011]

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

69

Edge weight preprocess à
no or low runtime hit!

Adjust solver to take potentials into account at runtime
• E.g., P�-O = 2.1 and PO-AB = 0.1

• Edges between O-altruist and O-AB pair has weight:
1 – 0.5(2.1+0.1) = -0.1

• Chain must be long enough to offset negative weight

Also take into account learned weight function w

Offline Experts Historical

Data

Experts Current

State
Online

Historical

Data

Mine & Learn

w : E ! R+
Graph

Generator

Learn

Potentials

Clearing

Engine
Match

Online:

70

We show it is possible to:
• Increase overall #transplants a lot at a (much) smaller

decrease in #marginalized transplants

• Increase #marginalized transplants a lot at no or very low
decrease in overall #transplants

• Increase both #transplants and #marginalized

Sweet spot depends on distribution:
• Luckily, we can generate – and learn from – realistic families of

graphs!

EXPERIMENTAL
RESULTS & IMPACT

Presented at
Supercomputing

Tied with IBM Watson

FutureMatch now used for policy
recommendations at UNOS 71

THE CUTTING EDGE

72

MOVING BEYOND KIDNEYS:
LIVERS
Similar matching problem (mathematically)

Right lobe is biggest but riskiest; exchange may reduce right
lobe usage and increase transplants

[Sönmez 2014]

[Ergin, Sönmez, Ünver w.p. 2015]

73

MOVING BEYOND KIDNEYS:
MULTI-ORGAN EXCHANGE
Chains are great! [Anderson et al. 2015, Ashlagi et al. 2014, Rees et al. 2009]

Kidney transplants are “easy” and popular:
• Many altruistic donors

Liver transplants: higher mortality, morbidity:
• (Essentially) no altruistic donors

74

A

D1

P1

Ki
dn

ey

D2

P2

Ki
dn

ey

D3

P3
Li

ve
r

D4

P4

Ki
dn

ey …

[Dickerson Sandholm AAAI-14, JAIR-16]

SPARSE GRAPH, MANY
ALTRUISTS
nK kidney pairs in graph DK; nL = γnK liver pairs in graph DL

Number of altruists t(nK)
Constant pKàL > 0 of kidney donor willing to give liver
Constant cycle cap z

Theorem

Assume t(nK) = βnK for some constant β>0. Then, with probability 1 as nK
à ∞,

Any efficient matching on D = join(DK,DL) matches Ω(nK)
more pairs than the aggregate of efficient matchings on
DK and DL. Building on [Ashlagi et al. 2012] 75

INTUITION
Find a linear number of “good cycles” in DL that are length > z

• Good cycles = isolated path in highly-sensitized portion of pool and
exactly one node in low portion

Extend chains from DK into the isolated paths (aka can’t be matched
otherwise) in DL, of which there are linearly many

• Have to worry about pKàL, and compatibility between vertices
Show that a subset of the dotted edges below results in a linear-in-
number-of-altruists max matching

• à linear number of DK chains extended into DL
• à linear number of previously unmatched DL vertices matched

76

SPARSE GRAPH, FEW
ALTRUISTS
nK kidney pairs in graph DK; nL = γnK liver pairs in graph DL

Number of altruists t – no longer depends on nK!
λ is frac. lowly-sensitized
Constant cycle cap z

Theorem

Assume constant t. Then there exists λ’ > 0 s.t. for all λ < λ’

Any efficient matching on D = join(DK,DL) matches Ω(nK)
more pairs than the aggregate of efficient matchings on
DK and DL.

With constant positive probability. Building on [Ashlagi et al. 2012] 77

INTUITION
For large enough λ (i.e., lots of sensitized patients), there exist
pairs in DK that can’t be matched in short cycles, thus only in
chains

• Same deal with DL, except there are no chains
Connect a long chain (+altruist) in DK into an unmatchable long
chain in DL, such that a linear number of DL pairs are now matched

78

ETHICAL ISSUES EXIST: BUT,
THIS RECENTLY HAPPENED!
Patient-donor pairs are now exchanging different goods
600% incremental increase in mortality risk for liver vs.
kidney donor
1/3000 risk of death for kidney donors [Muzaale et al. Gastroenterology 2012]

1/500 risk of death for liver donors [Cheah et al. Liver Transplantation 2013]

79

REAL-WORLD REASONING
ABOUT ETHICS

80

My liver, your kidney: The world's first non-identical organ swap – New Scientist – 9 May 2019
A daughter’s gift to her mother saves two lives – The Washington Post – 11 May 2019

Fundamentally different matching problem
• Two donors needed

MOVING BEYOND KIDNEYS:
LUNGS

[Date et al. 2005;
Sönmez 2014]

(Compare to the single
configuration for a “3-cycle” in
kidney exchange.)

[Ergin, Sönmez, Ünver w.p. 2014]

81

OTHER RECENT & ONGOING
RESEARCH IN THIS SPACE
Dynamic matching theory with a kidney exchange flavor:
• Akbarpour et al., “Thickness and Information in Dynamic

Matching Markets”
• Anderson et al., “A dynamic model of barter exchange”
• Ashlagi et al., “On matching and thickness in heterogeneous

dynamic markets”
• Das et al., “Competing dynamic matching markets”
Mechanism design:
• Blum et al. “Opting in to optimal matchings”
Not “in the large” random graph models:
• Ding et al., “A non-asymptotic approach to analyzing kidney

exchange graphs

82

IS LIFE ALWAYS SO (NP-)HARD?

83

ONE SIMPLE ASSUMPTION
COMPLEXITY THEORY HATES!
• Observation: real graphs are constructed from a few

thousand if statements
• If the patient and donor have compatible blood types …
• ... and if they are compatible on 61 tissue type features ...
• ... and if their insurances match, and ages match, and ...
• ... then draw a directed edge; otherwise, don’t

• Hypothesis: real graphs can be represented by a small
constant number of bits per vertex – we’ll test later

84

Given a constant number of if statements and a constant
cycle cap, the clearing problem is in polynomial time

T
H
E
O
R
E
M

[Dickerson Kazachkov Procaccia Sandholm arxiv:1605.07728]

A NEW MODEL FOR
KIDNEY EXCHANGE
• Graph G = (V, E) with patient-donor pair vi in V with

• Attribute vectors di and pi such that the qth element of di
(resp. pi) takes on one of a fixed number of types

• E.g., di
q or pi

q takes a blood type in {O, A, B, AB}
• Call Q the set of all possible “types” of d and p

• Then, given compatibility function f : Q x Q à {0,1} that
uniquely determines if an edge between di and pj exists
• We can create any compatibility graph (for large enough

vectors in D and P)
• (Altruists are patient-donor pairs where the “patient” is

compatible with all donors à chains are now cycles)

85

[Dickerson et al. arxiv:1605.07728]

• Let f(q,q’) = 1 if there is a directed edge from a donor with
type q to a patient with type q’

• For all q = (<q1,p,q1,d> …, <qr,p,qr,d>) in Q2r let
fC(q) = 1 if f(qt,d,qt+1,p) = 1 and f(qr,d,q1,p) = 1

• Given cycle cap L, define
T(L) = { q in Q2r : r ≤ L and fC(q) = 1 }

86

CLEARING IS NOW IN
POLYNOMIAL TIME

Given constant L and |Q|,
the clearing problem is in polynomial time

T
H
E
O
R
E
M

87

CLEARING IS NOW IN
POLYNOMIAL TIME
• T(L) is all vectors of types that create feasible cycles of

length up to L

88

CLEARING IS NOW IN
POLYNOMIAL TIME
• Each set {mq} says we have mq1 cycles of type q1, mq2 cycles of

q2, …, mq|T(L)| cycles of q|T(L)|, constrained to at most n cycles total

89

CLEARING IS NOW IN
POLYNOMIAL TIME
• Check to see if this collection is a legal cycle cover – just

check that each type q isn’t used too many times in mq

90

CLEARING IS NOW IN
POLYNOMIAL TIME
• Return the legal cycle cover such that the sum over q of

mq is maximized – aka the largest legal cycle cover

FLIPPING ATTRIBUTES IS
ALSO EASY
• The human body tries to reject transplanted organs

• Before transplantation, can immunnosupress some “bad”
traits of the patient to increase transplant opportunity

• Takes a toll on the patient’s health
• Suppose we can pay some cost to change attributes
• For all q, q’ in Q, let

c : Q x Q à R be cost of flipping qà q’
• Flip-and-Cover: maximize match size minus cost of flips

91

Given constant L and |Q|,
the Flip-and-Cover problem is in polynomial time

T
H
E
O
R
E
M

A CONCRETE INSTANTIATION:
THRESHOLDING
• Associate with each patient and donor a k-bit vector

• Count “conflict bits” that overlap at same position
• If more than threshold t conflict bits, don’t draw an edge

• Example: k = 2, blood containing antigens A and B
• Q = 2{ has-A, has-B } x 2{ no-A, no-B }

• Draw edge if <di, pj> ≤ t; do not draw edge otherwise

92

Donor
blood type

Patient
blood type

Donor type A = [1, 0]
Patient type AB = [0, 0]

Donor type A = [1, 0]
Patient type O = [1, 1]

Related to intersection graphs:
Each vertex has a set; draw edge between vertices iff

sets intersect (by at least p elements)

A
S
I
D
E

UPPER BOUND: SOMETIMES
YOU NEED LOTS OF BITS

93

For any n > 2, there exists a graph on n vertices
that is not (k,0)-representable for all k < n

T
H
E
O
R
E
M

For each vertex i, draw edge to each vertex
except vertices i-1 and i
BWOC assume (k,0)-representable, k < n:
• Consider vertex 1
• (1, n) not in E; (1, i) in E otherwise
• Then there is a conflict bit between vertex 1

and n that is not “turned on” anywhere else
• Do for n vertices à require k ≥ n

1 2

6 3

5 4

HARDNESS: HOW MANY BITS
DO I NEED FOR THIS GRAPH?

94

The (k,t)-representation problem is NP-complete
(proof via reduction from 3SAT)

T
H
E
O
R
E
M

Given: an input graph G = (V, E)
subset F of C(V, 2)
fixed positive k, nonnegative t

Does there exist:
k-length bit vectors di, pi for all vi in V
such that for (i,j) in F, also (i,j) in E iff <di,pj> ≤ t

COMPUTING
(K,T)-REPRESENTATIONS: QCP

• Quadratically-constrained discrete feasibility program:
• Constraint matrix not positive semi-definite à non-convex

• State-of-the-art nonlinear solvers (e.g., Bonmin) fail

95

[Bonami et al. 2008]

For each vertex, give k bits to the patient and k bits to the donor

If an edge exists in the graph, assert the source donor vector and sink patient
vector overlap by at most t

If an edge does not exist, make sure the overlap is greater than t

COMPUTING
(K,T)-REPRESENTATIONS: IP

• Integer program minimizes number of “conflict edges”
• CPLEX struggles to find non-trivial solutions
• CPLEX cannot find feasible solution (when forcing all xij = 0)

96

COMPUTING
(K,0)-REPRESENTATIONS: SAT

• When t = 0, can use a compact SAT formulation
• Interesting because it closely mimics real life

• We can solve small- and medium-sized graphs
• Use Lingeling, a good parallel SAT solver [Biere 2014]

97

Specific case of t = 0: if an edge exists, allow no overlap

Specific case of t = 0: if an edge does not exist, force any overlap

40 60 80 100 120 140 160
|V |

0

20

40

60

80

100

120

140

160
k

Theoretical bound
Proved SAT
Proved UNSAT
Unknown

98

CAN WE REPRESENT REAL GRAPHS
WITH A SMALL NUMBER OF BITS?

Bigger real-world graphs (UNOS 2010 – 2012)

Theory: k
= |V|

Proved SAT

Proved UNSAT

Unknown (?)

RELAXING THE THRESHOLD

0 1 2 3 4 5
t

0%

20%

40%

60%

80%

100%
Pa

irs
m

at
ch

ed
(m

ed
ia

n)

|V | = 50

|V | = 100

|V | = 150

|V | = 200

|V | = 250

99

Loosen bit threshold t on real UNOS graphs

3x pairs matched!
(1-bit overlap allowed)

Everyone matched!*
(4-bit overlap allowed)

*all bits created
equal, and not
actually flipping
bits – just relaxing
global threshold

10
0

10
1

BACKUP
SLIDES
JOHN P DICKERSON

FAILURE-AWARE MODEL
Compatibility graph G
• Edge (vi, vj) if vi’s donor can donate to vj’s patient
• Weight we on each edge e

Success probability qe for each edge e

Discounted utility of cycle c
u(c) = ∑we � ∏qe

Value of successful cycle Probability of success

10
3

FAILURE-AWARE MODEL
Discounted utility of a k-chain c

Cannot simply “reweight by failure probability”

Utility of a match M: u(M) = ∑ u(c)

Exactly first i transplants Chain executes in entirety

10
4

INCREMENTALLY SOLVING
VERY LARGE IPS
#Decision variables grows linearly with #cycles and #chains
in the pool
• Millions, billions of variables

• Too large to fit in memory

Branch-and-price incrementally brings variables into a
reduced model [Barnhart et al. 1998]

Solves the “pricing problem” – each variable gets a real-
valued price
• Positive price à resp. constraint in full model violated

• No positive price cycles à optimality at this node

10
5

CONSIDERING ONLY
“GOOD” CHAINS

Donation to
waitlist

Discounted utility of
current chain

Optimistic future value
of infinite extension

Pessimistic sum of LP
dual values in model

Theorem:
Given a chain c, any extension c’ will not be needed in an optimal
solution if the infinite extension has non-positive value.

10
6

G(n, t(n), p): random graph with
• n patient-donor pairs

• t(n) altruistic donors

• Probability Θ(1/n) of incoming edges

Constant transplant success probability q

Theorem

For all q∈ (0,1) and α, β > 0, given a large G(n, αn, β/n), w.h.p. there
exists some matching M’ s.t. for every maximum cardinality matching
M,

uq(M’) ≥ uq(M) + Ω(n)

10
7

BRIEF INTUITION:
COUNTING Y-GADGETS

For every structure X of constant size, w.h.p. can find Ω(n) structures
isomorphic to X and isolated from the rest of the graph
Label them (alt vs. pair): flip weighted coins, constant fraction are
labeled correctly à constant × Ω(n) = Ω(n)
Direct the edges: flip 50/50 coins, constant fraction are entirely
directed correctly à constant × Ω(n) = Ω(n)

10
8

Under the “most stringent” fairness rule:

Theorem

Assume “reasonable” level of sensitization and “reasonable” distribution of
blood types. Then, almost surely as n à ∞,

(And this is achieved using cycles of length at most 3.)

10
9

Linear
efficiency loss

Sublinear loss

B-AB O-AB X-X

AB-B p̄µABµO AB-O A-O

AB-A A-AB O-A B-A

O-B B-O A-B o(n)

8X

1

11
0

BETTER STATIC
OPTIMIZATION METHODS
Recall two main methods for solving big IPs for kidney
exchange:

• Branch-and-price = B&B + column generation
• Constraint generation

Many different ways to do these:
• E.g., how do I solve the pricing problem?
• E.g., which constraints should I add to the model?

Big runtime changes [Anderson et al. PNAS-2015, Glorie et al. MSOM-2014]

11
1

BASIC EDGE FORMULATION

Binary variable xij for each edge from i to j

Maximize
u(M) = Σ wij xij

Subject to
Σj xij = Σj xji for each vertex i
Σj xij ≤ 1 for each vertex i

Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1)

(no path of length L that doesn’t end where it started – cycle cap)

[Abraham et al. 07]

Flow constraint

11
2

STATE OF THE ART FOR
EDGE FORMULATION
Builds on the prize-collecting traveling salesperson problem [Balas
Networks-89]

• PC-TSP: visit each city (patient-donor pair) exactly once, but with
the additional option to pay some penalty to skip a city (penalized
for leaving pairs unmatched)

They maintain decision variables for all cycles of length at most L,
but build chains in the final solution from decision variables
associated with individual edges
Then, an exponential number of constraints could be required to
prevent the solver from including chains of length greater than K;
these are generated incrementally until optimality is proved.

• Leverage cut generation from PC-TSP literature to provide stronger
(i.e. tighter) IP formulation

[Anderson et al. PNAS-2015]

11
3

BEST EDGE FORMULATION
[Anderson et al. 15]

A

A

A

V

If: flow into v from a chain
Then: at least as much flow
across cuts from {A}

C1

C2

C3

…

Ck

11
4

REVIEW: CYCLE
FORMULATION

Binary variable xc for each cycle/chain c of length at most L
Maximize

Σ |c|xc
Subject to

Σc : i in c xc ≤ 1 for each vertex i

Objective = maximum cardinality

11
5

DFS TO SOLVE
PRICING PROBLEM
Pricing problem:

• Optimal dual solution π* to reduced model
• Find non-basic variables with positive price (for a

maximization problem)
• 0 < weight of cycle – sum of duals in π* of constituent vertices

First approach [Abraham et al. EC-2007] explicitly prices all
feasible cycles and chains through a DFS

• Can speed this up in various ways, but proving no positive
price cycles exist still takes time poly in chain/cycle cap =
bad for even reasonable caps

[Abraham et al. PNAS-2015]

11
6

THE RIGHT IDEA
Idea: solve structured optimization problem that implicitly prices
variables

Price: wc – Σv in c δv = Σe in c we – Σv in c δv = Σ(u,v) in c [w(u,v) – δv]
Take G, create G’ s.t. all edges e = (u,v) are reweighted r(u,v) = δv – w(u,v)

• Positive price cycles in G = negative weight cycles in G’

Bellman-Ford finds shortest paths
• Undefined in graphs with negative weight
• Adapt B-F to prevent internal looping during the traversal

• Shortest path is NP-hard (reduce from Hamiltonian path:
• Set edge weights to -1, given edge (u,v) in E, ask if shortest path

from u to v is weight 1-|V| à visits each vertex exactly once
• We only need some short path (or proof that no negative cycle exists)

• Now pricing runs in time O(|V||E|cap2)

11
7

LOOP BLOCKING MUST
BE DURING TRAVERSAL

(cycle cap = 3, chain cap = 6)

AP5

P7P6

P1

P8 P4

P2

P3

0

0

0 0

0

-1

0

0

0

-2

11
8

EXPERIMENTAL RESULTS

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chain length cap

0

10

20

30

40

50

60

70
M

ea
n

tim
e

(s
)

Individual UNOS match runs
BNP-DFS
BNP-POLY

CG-TSP

Note: Anderson et al.’s algorithm (CG-TSP) is very strong for uncapped aka
“infinite-length” chains, but a chain cap is often imposed in practice

11
9

