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THE CLEARING PROBLEM

./*.//‘

The clearing problem is to find the “best” disjoint set of
cycles of length at most L, and chains

» Typically, 2 < L < 5 for kidneys (e.g., L=3 at UNOS)

* NP-hard (for L>2) in theory, really hard in practice [Glorie etal. 2014,

A tal. 201
[Abraham et al. 07, Biro et al. 09] p?aduir?;ezgmo >

Dickerson et al. 2016 ...]
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SPECIAL CASE: L =2

PTIME: translate to maximum matching on undirected graph

P??7?777?7?7?7?7?27?77?7
(Six pairs, no altruists.)
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SPECIAL CASE: L=

PTIME via formulation as maximum weight perfect matching

(Six pairs, no altruists.)

Donors:
Edge weights:

......... =0

_=We

Patients:




GENERAL CASE: L =7

NP-hard via reduction from 3D-matching:
* Given disjoint sets X, Y, Z of size q ...
« ...andasetoftriplesTSEXxYxZ...

* ...is there a disjoint subset M € T of size q?




GENERAL CASE: L =7

Construct a gadget foreach t;={x_, y,, z.} in T

Gadgets intersect only on vertices inXUY UZ

VvV




GENERAL CASE: L =7

M is perfect matching = construction has perfect cycle cover.
Fort,inT:

VvV




GENERAL CASE: L =7

M is perfect matching = construction has perfect cycle cover.

Fort,notin T:

VAV




GENERAL CASE: L =7

We have a perfect cycle cover > M is a perfect 3D matching
« Construction only has 3-cycles and L-cycles

« Short cycles (i.e., 3-cycles) are disjoint from the rest of the
graph by construction

Thus, given a perfect cover (by assumption):
 Widgets either contribute accordingto t,in M ...
e ...ortnotin M.

Thus there is a perfect matching in the original 3D matching
instance.




HOPELESS ...?
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BASIC APPROACH #1:
THE EDGE FORMULATION

[Abraham et al. 2007]

Binary variable x; for each edge from i to j

Maximize
u(M) = 2 w; x; Flow constraint
Subject to
@ for each vertex i
2 X;j S 1 for each vertex /
2 1<kl Xigkicke1) S L1 for paths i(1)...i(L+1)

( no path of length L that doesn’t end where it started — cycle cap)




STATE OF THE ART FOR
EDGE FORMULATION

[Anderson et al. PNAS-2015]

Builds on the prize-collecting traveling salesperson problem [Balas
Networks-89]

- PC-TSP: visit each city (patient-donor pair) exactly once, but with
the additional option to pay some penalty to skip a city (penalized
for leaving pairs unmatched)

They maintain decision variables for all cycles of length at most L,
but build chains in the final solution from decision variables
associated with individual edges

Then, an exponential number of constraints could be required to
prevent the solver from including chains of length greater than K;
these are generated incrementally until optimality is proved.

* Leverage cut generation from PC-TSP literature to provide stronger
(i.e. tighter) IP formulation




BEST EDGE FORMULATION

[Anderson et al. 2015]

Ck If: flow into v from a chain

Then: at least as much flow
across cuts from {A}

\
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BASIC APPROACH #2:
THE CYCLE FORMULATION

[Roth et al. 2004, 2005,
Abraham et al. 2007]

Binary variable x, for each feasible cycle or chain ¢
Maximize

uM) =2 w, x,
Subject to

2..iinc X. < 1 for each vertex i




SOLVING THE CYCLE
FORMULATION IP

Too large to write down

O(max{ |P|-, |A||P|¥"}) variables

|A| =5, |[V|=300, L=3, K=20 ... |A||P|¥"= 5 x 104’
Approach: branch-and-price arnhart etal. 1998]:

Branch: select fractional column and fix its value to 1 and O
respectively X»

Fathom the search node if no better than incumbent

Solve LP relaxation using column generation




COLUNMN GENERATION

Master LP P has too many variables
« Won't fit in memory, and/or would take too long to solve

Begin with restricted LP P’, which contains only a small
subset of the variables (i.e., cycles)

« OPT(P)< OPT(P)

Solve P’ and, if necessary, add more variables to it

« We do this intelligently by solving the pricing problem
Repeat until OPT(P’) = OPT(P)




DFS TO SOLVE
PRICING PROBLEM

[Abraham et al. EC-07]

Pricing problem:

 Optimal dual solution 1" to reduced model

 Find non-basic variables with positive price (for a
maximization problem)
* 0 < weight of cycle — sum of duals in 1" of constituent vertices

 Positive price for cycle - dual constraint is violated
» No positive price cycles = no dual constraints violated

First approach [Abraham et al. EC-2007] explicitly prices all
feasible cycles and chains through a DFS

« Can speed this up in various ways, but proving no positive
price cycles exist still takes a long time




GENERAL PRICING OF CYCLES &
CHAINS |S NP'HARD [Plaut et al. arXiv:1606.00117]

Reduce from Hamiltonian path

Y
Arbitrary @/\@
graph G




COMPARISON

Tradeoffs in number of variables, constraints

« IP #1: O(|E|") constraints vs. O(|V|) for IP #2

« IP #1: O(|V|?) variables vs. O(|V|-) for IP #2
IP #2’s relaxation is weakly tighter than #1’s. Quick intuition
in one direction:

- Take a length L+1 cycle. #2's LP relaxation is 0.

* #1's LP relaxation is (L+1)/2  — with 2 on each edge

Recent work focuses on balancing tight LP relaxations and
model size [Constantino et al. 2013, Glorie et al. 2014, Klimentova et al. 2014, Alvelos et
al. 2015, Anderson et al. 2015, Mak-Hau 2015, Manlove&O’Malley 2015, Plaut et al. 2016, ...].

* Newest work: compact formulations, some with tightest
relaxations known, all amenable to failure-aware matching




COMPACT
Fo RM U LAT I O N S [Constantino et al. EJOR-14]

Previous models: exponential #constraints (CG methods)
or #variables (B&P methods)

Let F be upper bound on #cycles in a final matching
Create F copies of compatibility graph
Search for a single cycle or chain in each copy

* (Keep cycles/chains disjoint across graphs)

Cycle 1 Cycle 2 Complete solution

- = - = - -
N N




COMPACT FORMULATIONS

¢ | 1 ifarc (4,7) is selected to be in copy f of the graph,
Tij =1 0 otherwise

maximize Z Z wz]aji; 1A

f (i,j)cA
subject to Z :U,{j: Z :107{7 Vie V,Vfed{l,...,F} 1B
J:(J)eA j:(3,5)€EA
> Y al<i VieV 1C
foj:(i5)eA
Z x{jék Vie{l,...,F} 1D
(i,j)€A
zl; € {0,1} V(i,j) € ANfe{l,...,F} 1E

1A: max edge weights over all graph copies
1B: give a kidney <-> get a kidney within that copy
1C: only use a vertex once

Polynomial #constraints and
1D: cycle cap #variables!

N
N
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PIEF: A COMPACT MODEL
FOR CYCLES ONLY

[Dickerson Manlove Plaut Sandholm Trimble EC-16]
Builds on Extended Edge Formulation of Constantino et al.

* O(|V]) copies of graph, 1 binary variable per edge per copy
 Enforce at most one cycle per graph copy used

« Track positions of edges in cycles for LP tightness

The tightest known non-compact LP relaxation

Zcr = Zper
(disallowing chains)

(EC-16 paper also presents HPIEF, which is a compact
formulation for cycles and chains, but with weaker Z,p\gf)
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PICEF: POSITION-INDEXED
CHAIN-EDGE FORMULATION

In practice, cycle cap L is small and chain cap K is large
Idea: enumerate all cycles but not all chains [Anderson et al. 2015]

That work required O(]V|X) constraints in the worst case
* This work requires O(K]|V]) = O(]V]?) constraints

Track not just if an edge is used in a chain, but
where in a chain an edge is used.

For edge (i,j) in graph: K’(ij) = {1} if i is an altruist
K'(i,j) ={2, ..., K} if i is a pair




PICEF: POSITION-INDEXED
CHAIN-EDGE FORMULATION

Maximize
UM) = Zjjine Zkinkiij Wi Yik * Zcinc We Zg
Subject to
2iiinE ZkinK(ij) Yik ¥ Zc:iinc Zc S 1 for every i in Pairs

Each pair can be in at most one chain or cycle

2iine Yij1 S 1 for every i in Altruists

Each altruist can trigger at most one chain via outgoing edge at position 1

2jiiiin E Yik+1 = Zjjiin £ “kin k) Yk < 0 for every iin Pairs
and kin{1, ..., K-1}

Each pair can be have an outgoing edge at position k+1 in a chain iff it
has an incoming edge at position k in a chain 'c‘\l)
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WHAT IF THERE ARE STILL
TOO MANY VARIABLES?

In particularly dense graphs or if, in the future, longer cycle
caps are allowed, PICEF may need too many cycle variables

Solve via branch and price by storing only a subset of
columns in memory, then solving pricing problem

« Search for variables with positive price, bring into model

* Previously: that search is exponential in chain cap [Abraham et al.
2007, Glorie et al. 2014, Plaut et al. 2016]

* General: pricing chains & cycle is NP-hard [arxiv:1606.00117]

But we only need to price cycles, not chains!

PICEF is the first branch-and-price-based model with
provably correct polynomial-time pricing




POLYNOMIAL-TIME
CYCLE PRICING

[Glorie et al. MSOM-2014, Plaut et al. AAAI-2016]

Solve a structured problem that implicitly prices variables
« Variable = x, for cycle (not chain) ¢
e Priceofx,= w,—2,;,:0,
Example

» Price: (2+3+2) — (0p;+0p,10p3)

\ﬁ—‘
We
Zeinc We_ Zvinc 6v

z(u,v) inc [W(u,v) _ 5v]

Idea: Take G, create G’ s.t. all edges e = (u,v) are reweighted
r(u,v) = 6v - W(u,v)

« Positive price cycles in G = negative weight cycles in G’




ADAPTED BELLMAN-FORD
PRICING FOR CYCLES ONLY

[Glorie et al. MSOM-2014, Plaut et al. AAAI-2016]

Bellman-Ford finds shortest paths
* Undefined in graphs with negative weight
« Adapt B-F to prevent internal looping during the traversal

« Shortest path is NP-hard (reduce from Hamiltonian path):

« Set edge weights to -1, given edge (u,v) in E, ask if shortest
path from u to v is weight 7-|V| - visits each vertex exactly
once

* We only need some short path (or proof that no negative
cycle exists)

* Now pricing runs in time O(|V]|E|L?)




HOW DO ALL THESE MODELS
PERFORM IN PRACTICE?

Test on real and simulated match runs from:

« US UNOS exchange: 143+ transplant centers
« UK NLDKSS: 20 transplant centers
Following are tests against actual code for:

 BhP-DFS [Abraham et al. EC-07]
* BNP-Poly [Glorie et al. MSOM-14, Plaut et al. AAAI-16]
o CG-TSP [Anderson et al. PNAS-15]




REAL MATCH RUNS
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UNOS: 286 match runs
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GENERATED DATA




|P|=T00. [N[=7 _ |P[=T700. IN|=14
L 28

3600( |[« = HPiEF e kg 3600[ o, e
= PICEF G R N S
33000' ¢ -& BNP-PICEF ¥
- A--ao BNP-PoLY !
o 2400

5 3 4 5 6 7 8 9 10 11 12 T2 3 4 5 6 7 8 9 10 11 12
Chain length cap Chain length cap

|P|=700, [N|=35  |P|=700, |[N| =175

2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12

Chain length cap Chain length cap

Solvers that are not shown timed out (within one-hour period).




THE BIG PROBLEM

What is “best”?

« Maximize matches right now or over time?
» Maximize transplants or matches?

» Prioritization schemes (i.e. fairness)?

* Modeling choices?

* Incentives? Ethics? Legality?

Optimization can handle this, but may be inflexible in
hard-to-understand ways (for humans)

Want humans in the loop at a high level

(and then CS/Opt handles the implementation)




MANAGING SHORT-TERM
UNCERTAINTY

[EC-13, EC-15, EC-16, Management Science fo appear]
With A. Blum, N. Haghtalab, D. Manlove, B. Plaut, A. Procaccia, T. Sandholm, A. Sharma, J. Trimble




MATCHED # TRANSPLANTED

Only around 10-15% of UNOS matched structures
result in an actual transplant

« Similarly low % in other exchanges [ATC 2013]
Many reasons for this. How to handle?

One way: encode probability of transplantation
rather than just feasibility

 for individuals, cycles, chains, and full matchings




FAILURE-AWARE MODEL

Compatibility graph G
- Edge (v;, v)) if v/'s donor can donate to v;'s patient
» Weight w, on each edge e

Success probability q, for each edge e

Discounted utility of cycle ¢

u(c) = 2w, *[1q.

Value of successful cycle Probability of success




FAILURE-AWARE MODEL

Discounted utility of a k-chain ¢

@ @

d1 gz

@ @

ds

|| ll 1 1
10;(1-92)- + 20919(1-69919,03(14$91929394

Exactly first i transplants Chain executes in entirety

Cannot simply “reweight by failure probability”




DISCOUNTED CLEARING
PROBLEM

(“Best” = max expected cardinality | limited recourse)

Find matching M" with highest discounted utility

Maximum cardinality [ Maximum expected transplants ]
0.1 0.1

/0.9\,

N o090 _“
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SOLVING THIS NEW PROBLEM

[Theorem:
In a sparse random graph model, for any failure probability p, w.h.p.
there exists a matching that is “linearly better” than any max-

\cardinality matching

Practice: Solved via branch-and-price Maybe this is

- One binary decision variable per cycle/chain 2 GOl 228 ooc

- Upper-bounding is now NP-hard (X)
* Pricing problem is (empirically) much easier @



s

All UNOS match runs (constant)

Il Probabilistic
Current

Expected Transplants

All UNOS match runs (bimodal)

A N Lh) Mﬁ% o 1 1%M 1' U

I Probabilistic
Current

2 %
0 Il . ¥} il T:c ! il il
0 20 40 60 80 100 120 140 160
UNOS Match Run

Under discussion for implementation at UNOS
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PRE-MATCH EDGE TESTING

Idea: perform a small amount of costly testing before a match
run to test for (non)existence of edges

 E.g., more extensive medical testing, donor interviews,
surgeon interviews, ...

Cast as a stochastic matching problem:

Given a graph G(V,E), choose subset of edges S such that:

IM(S)[ = (1-¢) IM(E)|

Need: “sparse” S, where every vertex has O(1) incident tested edges




GENERAL THEORETICAL
RESULTS

Adaptive: select one edge per vertex per round, test, repeat

Stochastic matching:
(1-€) approximation with O,(1) queries per vertex, in O, (1) rounds

Stochastic k-set packing:

(2/k — €) approximation with O(1) queries per vertex, in O¢(1) rounds

Non-adaptive: select O(1) edges per vertex, test all at once

Stochastic matching:
(0.5-¢) approximation with O¢(1) queries per vertex, in 1 round

Stochastic k-set packing:
(2/k — €)? approximation with O¢(1) queries per vertex, in 1 round




ADAPTIVE ALGORITHM

/.\ /, /.
-7 RN ¢ 1
For R rounds, do: « . O e/
. . . . . ~l~ < 4 _ /
1. Pick a max-cardinality matching M in graph G, N R
minus already-queried edges that do not exist ¢~ . // ,7’\4’ \\
2. Query all edges in M \‘\\" °
Input Graph
Base graph Matching picked Result of queries
0. ? () 9 °
/// \‘__/:'-. /, ,/ ’ 7 /’ // ’
( (o B /_ // ' \ g o o / ¢ / (
1: |7 g e o PN ! °
| 1 ¢ / \.,! A 4 / / A /
¢ 7/ ; \”‘ \\ ( / / J \ /
\‘.\ / o o
\N.‘ ‘ .I ‘
//.\\ ,', , *\‘ /’ ’ ‘\‘
® - —/_ / /
/ 7170 - 7/ Q
2 q‘(\,’}; 7/'/"\"\[' [ X X )
LIPR¢ ~ /
‘ Ny 11.\"‘ \\ ‘ ~ ( \
\.\‘il o T~ o .\o




INTUITION FOR
ADAPTIVE ALGORITHM

If at any round r, the best solution on edges queried so far is
small relative to omniscient ...

* ... then current structrure admits /arge number of unqueried,
disjoint augmenting structures

* For k=2, aka normal matching, simply augmenting paths
Augmenting structures might not exist, but can query in
parallel in a single round

* Structures are constant size - exist with constant probability

« Structures are disjoint - queries are independent

- = Close a constant gap per round




1.0

UNOS 2 and 3-cycles, with chains

e

C 0.8}

Q
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c 04F Atp=05, oneedgetest —

O per vertex > +21% OPT — R=0

[S) -- R=1

© | ~- R=2

o2 T e
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: — R=5
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate

Even 1 or 2 extra tests would result in a huge lift




In theory and practice, we’re helping the
global bottom line by considering post-
match failure ...

... But can this hurt some individuals?




BALANCING EQUITY
AND EFFICIENCY

[AAMAS-14, AAAI-15, AAAI-18, Invited to AlJ, u.r. 2018]
With D. McElfresh, A. Procaccia and T. Sandholm




SENSITIZATION AT UNOS

Highly-sensitized patients: unlikely to be compatible
with a random donor
Sensitization in the UNOS Exchange

Il Sensitized Pairs
Normal Pairs

* Deceased donor 5[ Aluisic Donors
e Il Fraction Sensitized
waitlist: 17%

 Kidney exchanges: | eI
much higher (60%+) '

150

300

<
[

o
=)

Fracf Sensitized

Pool Size

.
L=

e
N

0.0

“Hard to match” patients

40 0 80 100 120 140 160
Match Run

6
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PRICE OF FAIRNESS

Efficiency vs. fairness:

- Utilitarian objectives may favor certain classes at
the expense of marginalizing others

 Fair objectives may sacrifice efficiency in the name
of egalitarianism

Price of fairness: relative system efficiency loss

under a fair allocation [Bertismas, Farias, Trichakis 2011]
[Caragiannis et al. 2009]




PRICE OF FAIRNESS
IN KIDNEY EXCHANGE

Want a matching M™that maximizes
utility function u: M - R

M* = argmaxu(M)
MEM

Price of fairness: relative loss of match
efficiency due to fair utility function wu:

u(M*) — u(M;.f)
u(M*)

POF (M, us) =




FROM THEORY TO
PRACTICE

We show that the price of fairness is low in theory
POF(M,uy>,) < %/34

Fairness criterion: extremely strict.

Theoretical assumptions (standard):

* Big, dense graphs (“n 2> «”)

« Cycles (no chains)

* No post-match failures

« Simplified patient-donor features

What about the price of fairness in practice?




TOWARD USABLE
FAIRNESS RULES

In healthcare, important to work within (or near to)
the constraints of the fielded system

« [Bertsimas, Farias, Trichakis 2013]
* Our experience with UNOS

We now present two (simple, intuitive) rules:
» Lexicographic: strict ordering over vertex types

+ Weighted: implementation of “priority points”




LEXICOGRAPHIC FAIRNESS

Find the best match that includes at least a
fraction of highly-sensitized patients

Matching-wide constraint:

* Present-day branch-and-price IP solvers rely on an
“easy” way to solve the pricing problem

« Lexicographic constraints =
pricing problem requires an IP solve, too!

Strong guarantee on match composition ...

« ... but harder to predict effect on economic efficiency




WEIGHTED FAIRNESS

Value matching a highly-sensitized patient at
(1+B) that of a lowly-sensitized patient, >0

Re-weighting is a preprocess =2

works with all present-day exchange solvers

Difficult to find a “good” 8?

« Empirical exploration helps strike a balance




UNOS MATCH RUNS

WEIGHTED FAIRNESS, VARYING FAILURE RATES




Pareto Frontier (No Failure Prob)
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© © © ©
ot (@) ~J (0.¢]
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Num. Matched (Total)
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CONTRADICTORY GOALS

Earlier, we saw failure-aware matching results in tremendous
gains in #expected transplants

Gain comes at a price — may further marginalize hard-to-
match patients because:

 Highly-sensitized patients tend to be matched in chains

 Highly-sensitized patients may have higher failure rates (in
APD data, not in UNOS data)

$8




UNQOS Individual Matches (Constant)

+30%

O — Failure-Aware
» w059, || == Max Cardinality
- s 54—
5 C 20%| p=
e Q[ _
= N +15%} =10
o) -
[ ©
th:J — +10%
2 3
8 -+  +5%
m O
S
< 0%
LL]
5%
10%) 0 0.2 08 1.0

Failure Probability

UNOS runs, weighted fairness, constant probability of failure (x-axis),
increase in expected transplants over deterministic matching (y-axis)




Fairness vs. efficiency can be balanced in
theory and In practice in a static model ...

... But how should we match over time?




LEARNING TO MATCHIN A
DYNAMIC ENVIRONMENT

[AAAI-12, AAAI-15, NIPS-15 MLHC, w.p. 2018]
With A. Procaccia and T. Sandholm




DYNAMIC KIDNEY EXCHANGE

Kidney exchange is a naturally dynamic event
Can be described by the evolution of its graph

« Additions, removals of edges and vertices

Vertex Removal Edge Removal Vertex/Edge Add
Transplant, this exchange Matched, positive crossmatch Normal entrance
Transplant, deceased donor
waitlist Matched, candidate refuses donor
Transplant, other exchange
("sniped") Matched, donor refuses candidate

Pregnancy, sickness changes
Death or iliness HLA
Altruist runs out of patience
Bridge donor reneges

How should we balance matching now versus waiting to match?




FUTUREMATCH: LEARNING TO MATCH IN
DYNAMIC ENVIRONMENTS

Offline Experts Historical Experts Current Online
Data State

: | : l

Historical Mine & Learn | Graph | Learn Clearing
Data w:FE — RT Generator Potentials Engine
| 1

Offline (run once or periodically)
1. Domain expert describes overall goal
2. Take historical data and policy input to learn a weight function w for match
quality
3. Take historical data and create a graph generator with edge weights set by w
4. Using this generator and a realistic exchange simulator, learn potentials for
graph elements as a function of the exchange dynamics

Online (run every match)

1. Combine w and potentials to form new edge weights on real input graphs
2. Solve maximum weighted matching and return match
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[
\4

Historical Mine & Learn
Data w: E — RT

I

Example objective (MaxLife)

« Maximize aggregate length of time donor organs last in patients ...
— ... possibly subject to prioritization _ Perfect HLA Match vs. Mismatch
schemes, fairness, etc ... ~_ |z PerecthiAMaucn
* Learn survival rates from all living
donations since 1987
« ~75,000 transplants
« Translate to edge weight

—

o
3

o

o
=

Frag. gralt success after n days

Imperfect HLA match I e

has worse survival rate than L 1 G » T o
raft survival (aays
perfect HLA match y

=]
=]

o/
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Historical
Data

l

Graph
Generator

300+ match runs with real UNOS data

Important to use realistic distribution

UNOS
(first match run) (recent snapshot)




Historical Experts
Data

l :

Graph Learn
_> .
Generator Potentials

|
3
|

illness, death, sniped,
donor reneged, etc

Exit:

Transplant success, or
illness, death, sniped,
donor reneged, etc...
Transplant success, or
Transplant success, or
illness, death, sniped,
donor reneged, etc...

[
.
[
.
[
.

Enter: |New pairs & altruists New pairs & altruists
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Learn

- —

Potentials

Full optimization problem is very difficult
» Realistic theory is too complex

» Trajectory-based methods do not scale
Approximation idea:

« Associate with each “element type” its potential to help objective in
the future

¢ (Must learn these potentials)

« Combine potentials with edge weights, perform myopic maximum
utility matching




[
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Learn

- —

Potentials

What is a potential?

Given a set of features O representing structural elements (e.g., vertex, edge,
subgraph type) of a problem:

« The potential P, for a type 6 quantifies the future usefulness of that element

E.g., let ©={0-0, O-A, ..., AB-AB, *-0O, ..., *-AB}
* 16 patient-donor types, 4 altruist types

« O-donors better than A-donors, so: P.o> P. 4

Heavy one-time computation to learn potential of each type 6 — we use SMAC

\H\ SUPERCOMPUTING =
CENTER —

.|l|



Current
State

l

Clearing |
Engine

f

Online

Online:
Adjust solver to take potentials into account at runtime
° Eg, P._o= 2.1 and PO-AB =0.1

. Edges between O-altruist and O-AB pair has weight:
1-0.5(2.1+0.1) = -0.1

. Chain must be long enough to offset negative weight

Also take into account learned weight function w

Edge weight preprocess -
no or low runtime hit!
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PITTSBURGH
‘H\ SUPERCOMPUTING
CENTER

EXPERIMENTAL = etz ionsi

Application/Use

RESULTS & IMPACT

We show it is possible to:

Readers’ Choice

Presented at

* Increase overall #transplants a lot at a (much) smaller Supercomputing
" L] [ T. .
decrease in #marginalized transplants led with IBM Watson

* Increase #marginalized transplants a lot at no or very low
decrease in overall #transplants

* Increase both #transplants and #marginalized

Sweet spot depends on distribution:

* Luckily, we can generate — and learn from — realistic families of
graphs!

FutureMatch now used for policy
recommendations at UNOS
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THE CUTTING EDGE




MOVING BEYOND KIDNEYS:
LIVE Rs [Ergin, S6nmez, Unver w.p. 2015]

Similar matching problem (mathematically)

Right Lobe Left + Caudate Lobes  Left Lateral Segment
Segments 5-8 Segments 2-4 Segments 2-3

Donor Mortality: 0.5% Donor Mortality: 0.1%  Donor Mortality: Rare
Size: 60% Size: 40% Size: 20%
Most risky! Often too small Only pediatric  [S6nmez 2014]

Right lobe is biggest but riskiest; exchange may reduce right
lobe usage and increase transplants




MOVING BEYOND KIDNEYS:
MULTI-ORGAN EXCHANGE

[Dickerson Sandholm AAAI-14, JAIR-16]

Chains are great! [Anderson et al. 2015, Ashlagi et al. 2014, Rees et al. 2009]
Kidney transplants are “easy” and popular:

* Many altruistic donors
Liver transplants: higher mortality, morbidity:

* (Essentially) no altruistic donors
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SPARSE GRAPH, MANY
ALTRUISTS

ny kidney pairs in graph Dy; n, = yny liver pairs in graph D,
Number of altruists t(ng)
Constant px_,; > 0 of kidney donor willing to give liver

Constant cycle cap z

Theorem

Assume t(ny) = Bny for some constant >0. Then, with probability 1 as nk
> o,

Any efficient matching on D = join(Dy,D,) matches Q(n)
more pairs than the aggregate of efficient matchings on
Dyxand D,.

Building on [Ashlagi et al. 2012]




INTUITION

Find a linear number of “good cycles” in D, that are length > z

» Good cycles = isolated path in highly-sensitized portion of pool and
exactly one node in low portion

Extend chains from Dy into the isolated paths (aka can’t be matched
otherwise) in D, of which there are linearly many

» Have to worry about px,;, and compatibility between vertices

Show that a subset of the dotted edges below results in a linear-in-
number-of-altruists max matching

« = linear number of D, chains extended into D,
» = linear number of previously unmatched D, vertices matched

PH,L = CL/nL

P@@@@
P%@@ )@4@*@*@
Q(nk) { r@»@»@@ SSeK -)@4@*@*@

< >< TN r Q(nr)
. 4/5___<_\_\— j

I*@*@*@*@‘ -------- *@* @*@*@

> 2z (cycle cap) > 2z (cycle cap)

)« )/

(




SPARSE GRAPH, FEW
ALTRUISTS

ny kidney pairs in graph Dy; n, = yny liver pairs in graph D,
Number of altruists t — no longer depends on ny!
A is frac. lowly-sensitized

Constant cycle cap z

Theorem

Assume constant . Then there exists N’> 0 s.t. forall A< N\

Any efficient matching on D = join(Dy,D,) matches Q(n)

more pairs than the aggregate of efficient matchings on
Dy and D,.

With constant positive probability. Building on [Ashlagi et al. 2012]




INTUITION

For large enough A (i.e., lots of sensitized patients), there exist
pairs in D, that can’t be matched in short cycles, thus only in

chains

- Same deal with D,, except there are no chains

Connect a long chain (+altruist) in D, into an unmatchable long
chain in D;, such that a linear number of D, pairs are now matched

Q ! \{is*\s::s s=
\\5\5\\:\55\\ : . N C \: ::‘: - 0(1)
\\\\ ®»®»® ®~®»®~®»®»® @
@"@"@ @"@“@"@"@"@ -®-~®-® )2 w2—00) @®
fK/2 ZK/2 » /,’//;/’//////")‘,\’ i
OO O-O-O—D DD &0 OO " S

127 o2 /2
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ETHICAL ISSUES EXIST: BUT,
THIS RECENTLY HAPPENED:!

Patient-donor pairs are now exchanging different goods

600% incremental increase in mortality risk for liver vs.
kidney donor

1/3000 risk of death for kldney donors [Muzaale et al. Gastroenterology 2012]

1/500 risk of death for liver donors [Cheah et al. Liver Transplantation 2013]
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REAL-WORLD REASONING
ABOUT ETHICS

An unequal trade

A possible sticking point was whether this was a fair swap. In theory, a liver is worth more than a
kidney, because people with kidney failure can survive for many years on dialysis, but there’s no
equivalent for liver failure. Liver donation also has a higher rate of complications.

But Deveza had no doubts. “I was losing hope and I really wanted to do something.”

One factor that swayed the ethicists was that people are allowed to altruistically donate part of their
liver to a complete stranger. While not an equivalent swap, at least Deveza would be getting some
recompense in the form of helping her mother. @ﬂ]g

NewScientist e

According to a journal article that examined the ethics of this
exchange, a liver donor faces a 1 in 500 chance of death, while a
kidney donor faces a 1 in 3,000 chance of dying. UCSF’s ethics

committee deliberated and approved the transplants.

(-
A daughter’s gift to her mother saves two lives — The Washington Post — 11 May 2019 ©Q
My liver, your kidney: The world's first non-identical organ swap — New Scientist — 9 May 2019



MOVING BEYOND KIDNEYS:
LU NGS [Ergin, S6nmez, Unver w.p. 2014]

Fundamentally different matching problem

 Two donors needed

Donor 1 Donor 2

N\ /

[Date et al. 2005;
3-way lung exchange configurations Sénmez 2014]

(Compare to the single Recipient

configuration for a “3-cycle” in
kidney exchange.)




OTHER RECENT & ONGOING
RESEARCH IN THIS SPACE

Dynamic matching theory with a kidney exchange flavor:

* Akbarpour et al., “Thickness and Information in Dynamic
Matching Markets”

* Anderson et al., “A dynamic model of barter exchange”

« Ashlagi et al., “On matching and thickness in heterogeneous
dynamic markets”

« Das et al., “Competing dynamic matching markets”
Mechanism design:

« Blum et al. “Opting in to optimal matchings”

Not “in the large” random graph models:

« Ding et al., “A non-asymptotic approach to analyzing kidney
exchange graphs




IS LIFE ALWAYS SO (NP-)HARD?




ONE SIMPLE ASSUMPTION
COMPLEXITY THEORY HATES!

[Dickerson Kazachkov Procaccia Sandholm arxiv:1605.07728]

 Observation: real graphs are constructed from a few
thousand if statements
 If the patient and donor have compatible blood types ...
* ... and if they are compatible on 61 tissue type features ...
« ... and if their insurances match, and ages match, and ...
- ...then draw a directed edge; otherwise, don't

Given a constant number of if statements and a constant

cycle cap, the clearing problem is in polynomial time

SEmxxoOomI-

 Hypothesis: real graphs can be represented by a small
constant number of bits per vertex — we’ll test later




A NEW MODEL FOR
KIDNEY EXCHANGE

[Dickerson et al. arxiv:1605.07728]
 Graph G = (V, E) with patient-donor pair v; in V with
« Attribute vectors d; and p; such that the gth element of d,
(resp. p;) takes on one of a fixed number of types
- E.g., d9or pjtakes a blood type in {O, A, B, AB}
« Call ® the set of all possible “types” of d and p
« Then, given compatibility function f: ® x ® - {0,1} that
uniquely determines if an edge between d; and p; exists

- We can create any compatibility graph (for large enough
vectors in D and P)

« (Altruists are patient-donor pairs where the “patient” is
compatible with all donors = chains are now cycles)




CLEARING IS NOW IN
POLYNOMIAL TIME

Given constant L and |®|],

the clearing problem is in polynomial time

EmxoxoOomI-

Let f(0,0’) = 1 if there is a directed edge from a donor with
type 0 to a patient with type 0’

For all 6= (<0, ,,014> ..., <6,,,0,4>) in ® let
fo(6) = 11 F(8,0,8011,0) = 1 and (8,4, ;) = 1

Given cycle cap L, define
T(L)={O0in®*:r<sLandf;(6 =1}




CLEARING IS NOW IN
POLYNOMIAL TIME

« T(L) is all vectors of types that create feasible cycles of
lengthup to L

Algorithm 1 L-CYCLE-COVER
1. C* « ()
2. for every collection of numbers {mg }gc7 () such that
D_0cT (L) ™Mo =N

e if there exists cycle cover C such that ||C||,, > ||C*||\,
and for all @ € T (L), C contains mg cycles consist-
ing of vertices of the types in @ then C* < C

3. return C*




CLEARING IS NOW IN
POLYNOMIAL TIME

Each set {mj} says we have my4 cycles of type 6,, mg cycles of
6, ..., Mgy cycles of Gry), constrained to at most n cycles total

2. for every collection of numbers {mg }gc7 () such that
D_0cT (L) ™Mo =N




CLEARING IS NOW IN
POLYNOMIAL TIME

Check to see if this collection is a legal cycle cover — just
check that each type fisn’t used too many times in m,

e if there exists cycle cover C such that ||C||,, > ||C*||\,
and for all @ € T (L), C contains mg cycles consist-
ing of vertices of the types in @ then C* < C




CLEARING IS NOW IN
POLYNOMIAL TIME

Return the legal cycle cover such that the sum over @ of
m,is maximized — aka the largest legal cycle cover

3. return C*




EmxxOoOmI-

FLIPPING ATTRIBUTES IS
ALSO EASY

The human body tries to reject transplanted organs

« Before transplantation, can immunnosupress some “bad”
traits of the patient to increase transplant opportunity
« Takes a toll on the patient’s health
Suppose we can pay some cost to change attributes

Forall 6,0’ in O, let
c:® x 0O 2> R be cost of flipping 6 > 0’

Flip-and-Cover: maximize match size minus cost of flips

Given constant L and |®|],

the Flip-and-Cover problem is in polynomial time




mo-—omnd

A CONCRETE INSTANTIATION:
THRESHOLDING

« Associate with each patient and donor a k-bit vector

Count “conflict bits” that overlap at same position
If more than threshold ¢t conflict bits, don’t draw an edge
- Example: k=2, blood containing antigens A and B

® = 2{has-A, has-B} y 2{no-A, no-B}

\ J \ J
| |

Donor
blood type

Patient
blood type

Donortype A= [1,0] @
Patient type AB=[0, 0] W,
Donor type A= [1,0]
Patienttype O= [1,1]

- Draw edge if <d;, p> < t; do not draw edge otherwise

Related to intersection graphs:
Each vertex has a set; draw edge between vertices iff
sets intersect (by at least p elements)




SEmMmOuxOmI-

UPPER BOUND: SOMETIMES
YOU NEED LOTS OF BITS

For any n > 2, there exists a graph on n vertices

that is not (k,0)-representable for all k< n

For each vertex i, draw edge to each vertex
except vertices i-1 and j

BWOC assume (k,0)-representable, k < n:
Consider vertex 1

(1, n) not in E; (1, i) in E otherwise

Then there is a conflict bit between vertex 1
and n that is not “turned on” anywhere else

Do for n vertices 2 require k2 n




HARDNESS: HOW MANY BITS
DO I NEED FOR THIS GRAPH?

Given: an input graph G = (V, E)
subset F of C(V, 2)

fixed positive k, nonnegative ¢
Does there exist:
k-length bit vectors d;, p, for all v;in V
such that for (i) in F, also (i) in E iff <d,p> < t

The (k,t)-representation problem is NP-complete

(proof via reduction from 3SAT)

EmMmxouxOoOmI-




COMPUTING
(K, T)-REPRESENTATIONS: QCP

If an edge does not exist, make sure the overlap is greater than ¢

If an adna aviete in tha nranh accart tha eniirra Annnr vartar and cinlkk natiant

Quadratically-constrained discrete feasibility program:

Constraint matrix not positive semi-definite - non-convex

State-of-the-art nonlinear solvers (e.g., Bonmin) fail
[Bonami et al. 2008]




COMPUTING
(K, T)-REPRESENTATIONS: IP

min Z’v ev qu #szV gzg

s.t. dq>c /\p >c,&7 Vv; #v; € V,q € [K]
dq—l—p <1-|—c Vv, Zv; € V,q € K]

Z ng — ( )f’L] \V/(U’HUJ) S E

Z ci _( 1)&:; V(vi,vj) € E

Z > t+1— kfz] \V/(’Ui,’l}j) Q/ E

24 C i’ <k (k — t)&; V(vi,vj) € E
dl,p! € {0,1} Yv; € V,q € k]

ciiy&ij €{0,1} Vv #v; € V,q € [k]

Integer program minimizes number of “conflict edges”

CPLEX struggles to find non-trivial solutions
CPLEX cannot find feasible solution (when forcing all &; = 0)

{e
(e



COMPUTING
(K,0-REPRESENTATIONS: SAT

Specific case of t = 0: if an edge does not exist, force any overlap

Specific case of t = 0: if an edge exists, allow no overlap

« When t=0, can use a compact SAT formulation

 Interesting because it closely mimics real life
 We can solve small- and medium-sized graphs

- Use Lingeling, a good parallel SAT solver [Biere 2014]




CAN WE REPRESENT REAL GRAPHS
WITH A SMALL NUMBER OF BITS?

160

— Theoretical bound
140+t -- Proved SAT

- Proved UNSAT
1201 Unknown

100k H—— -
<ol S— T S— -
GOF- e .................. ................... ................. ..................

| o S R

2| --------------- ----------------- ------------- ---------- Unknown (?)
: : ; 0 . : |

QLO 6IO 8IO ‘100‘ 120 Proved UNSAT
v

Bigger real-world graphs (UNOS 2010 — 2012)




RELAXING THE THRESHOLD

100% il 1
Everyone matched!*
E (4-bit overlap allowed)
® 80% : |
©
£
—= 60%¢ |
IS
< 3x pairs matched!
..% 40% %, (1-bit overlap allowed) : |
& T VI=50 *all bits created
2 ==+ :[V|=100]| equal, and not
S 20% ------ : [V =150 |{ actually flipping
[0 1 AR : —= V] = 200 bits — just relaxing
e V| = 250 global threshold
0% i 5 3 i 5

Loosen bit threshold t on real UNOS graphs
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FAILURE-AWARE MODEL

Compatibility graph G
 Edge (v, v)) if v;'s donor can donate to v;'s patient
* Weight w, on each edge e

Success probability g, for each edge e

Discounted utility of cycle ¢

u(c) = we * [1q.

Value of successful cycle Probability of success

03

1




FAILURE-AWARE MODEL

Discounted utility of a k-chain ¢

Exactly first i transplants Chain executes in entirety

Cannot simply “reweight by failure probability”

Utility of a match M: u(M) =) u(c)




INCREMENTALLY SOLVING
VERY LARGE IPS

#Decision variables grows linearly with #cycles and #chains
in the pool

* Millions, billions of variables
* Too large to fit in memory

Branch-and-price incrementally brings variables into a
reduced model [Barnhart et al. 1998]

Solves the “pricing problem” — each variable gets a real-
valued price

» Positive price - resp. constraint in full model violated

* No positive price cycles - optimality at this node




CONSIDERING ONLY
“GOOD” CHAINS

Theorem:
Given a chain ¢, any extension ¢’ will not be needed in an optimal

solution if the infinite extension has non-positive value.

Optimistic future value Donation to
of infinite extension waitlist

Discounted utility of Pessimistic sum of LP
current chain dual values in model




G(n, t(n), p): random graph with

* n patient-donor pairs

* {(n) altruistic donors

» Probability ©(1/n) of incoming edges

Constant transplant success probability g

Theorem

For all ge (0,1) and a, B > 0, given a large G(n, an, B/n), w.h.p. there
exists some matching M’ s.t. for every maximum cardinality matching
M,

u

(M’) 2 ug(M) + Q(n)

q




BRIEF INTUITION:
COUNTING Y-GADGETS

Q @ © ®

v N4 ad
)
: .
| ] i
: ! !

gadget. (b) The maximum cardinality (c) The matching M5, .
matching My .

For every structure X of constant size, w.h.p. can find Q(n) structures
isomorphic to X and isolated from the rest of the graph

Label them (alt vs. pair): flip weighted coins, constant fraction are
labeled correctly - constant x Q(n) = Q(n)

Direct the edges: flip 50/50 coins, constant fraction are entirely
directed correctly - constant x Q(n) = Q(n)

®

A

)

A

(2) A




Under the “most stringent” fairness rule:

o U(M) if |MH| — IMaxpr e M |Ml,’{|
ur>-L(M) = { 0 otherwise

Theorem

Assume “reasonable” level of sensitization and “reasonable” distribution of
blood types. Then, almost surely as n = «,

2
POF(M,'U/H}L) S ﬁ

(And this is achieved using cycles of length at most 3.)




AB-B

Linear
efficiency loss

PLABHO

O-AB

Sublinear loss
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BETTER STATIC
OPTIMIZATION METHODS

Recall two main methods for solving big IPs for kidney
exchange:
 Branch-and-price = B&B + column generation
 Constraint generation
Many different ways to do these:

* E.g., how do | solve the pricing problem?
* E.g., which constraints should | add to the model?

Big runtime changes [Anderson et al. PNAS-2015, Glorie et al. MSOM-2014]
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BASIC EDGE FORMULATION

[Abraham et al. 07]

Binary variable x; for each edge from i to j

Maximize
u(M) = 2 w; x; Flow constraint
Subject to
@ for each vertex i
2 X;j S 1 for each vertex /
2 1<kt Xigyike1) S L-1 for paths i(1)...i(L+1)

( no path of length L that doesn’t end where it started — cycle cap)
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STATE OF THE ART FOR
EDGE FORMULATION [Anderson et al. PNAS-2015]

Builds on the prize-collecting traveling salesperson problem [Balas
Networks-89]

- PC-TSP: visit each city (patient-donor pair) exactly once, but with
the additional option to pay some penalty to skip a city (penalized
for leaving pairs unmatched)

They maintain decision variables for all cycles of length at most L,
but build chains in the final solution from decision variables
associated with individual edges

Then, an exponential number of constraints could be required to
prevent the solver from including chains of length greater than K;
these are generated incrementally until optimality is proved.

* Leverage cut generation from PC-TSP literature to provide stronger
(i.e. tighter) IP formulation




BEST EDGE FORMULATION

[Anderson et al. 15]

Ck If: flow into v from a chain

Then: at least as much flow
across cuts from {A}

\
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REVIEW: CYCLE
FORMULATION

Objective = maximum cardinality

Binary variable x, for each cycle/chain c of length at most L
Maximize

2 |c]x
Subject to

2..iincX:. <1 for each vertexi




DFS TO SOLVE
PRI CI NG PROBLEM [Abraham et al. PNAS-2015]

Pricing problem:

 Optimal dual solution 1" to reduced model

 Find non-basic variables with positive price (for a
maximization problem)
* 0 < weight of cycle — sum of duals in 1" of constituent vertices

First approach [Abraham et al. EC-2007] explicitly prices all
feasible cycles and chains through a DFS

« Can speed this up in various ways, but proving no positive
price cycles exist still takes time poly in chain/cycle cap =
bad for even reasonable caps




THE RIGHT IDEA

Idea: solve structured optimization problem that implicitly prices
variables

Price: We — Zv inc 6V Ze inc We — Zv inc 6V = Z(u,v) inc [W(u,v) - 6V]

Take G, create G’s.t. all edges e = (u,v) are reweighted r,,, = 6, — w,

* Positive price cycles in G = negative weight cycles in G’

Bellman-Ford finds shortest paths

» Undefined in graphs with negative weight
« Adapt B-F to prevent internal looping during the traversal
» Shortest path is NP-hard (reduce from Hamiltonian path:

- Set edge weights to -1, given edge (u,v) in E, ask if shortest path
from u to v is weight 7-|V| - visits each vertex exactly once

- We only need some short path (or proof that no negative cycle exists)
* Now pricing runs in time O(|V||E|cap?)
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LOOP BLOCKING MUST
BE DURING TRAVERSAL

(cycle cap = 3, chain cap = 6)




EXPERIMENTAL RESULTS

70}
60}

Note: Anderson et al.’s algorithm (CG-TSP) is very strong for uncapped aka

Individual UNOS match runs

@ — -0

BNP-DFS
+—  BNP-PoOLY ST
CG-TSP K

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chain length cap

“infinite-length” chains, but a chain cap is often imposed in practice




