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Why “differentiable 
economics”?

• Differentiable programming — term coined by Yann LeCun


• “OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep 
Learning est mort. Vive Differentiable Programming! …Yeah, 
Differentiable Programming is little more than a rebranding of the modern 
collection Deep Learning techniques…”


• “But the important point is that people are now building a new kind of 
software by assembling networks of parameterized functional blocks and 
by training them from examples using some form of gradient-based 
optimization. “ 

• Differentiable economics — term coined in a similar spirit by David Parkes


• Combines the same basic building blocks to create mechanisms which 
are differentiable, allowing them to be optimized using gradient descent

https://www.facebook.com/yann.lecun/posts/10155003011462143


Mechanism Design
• Mechanism design is the design of economic mechanisms — a mechanism is run 

by a central coordinator, who asks agents to report their preferences and then 
aggregates them to make some kind of resource allocation. 


• Common goals of mechanism design


• Maximize global welfare


• Ensure some notion of fairness


• Maximize revenue to the central agent


• Agents generally have private information about preferences (their type), and can 
choose to lie about them to the coordinator, but often the distribution over types is 
assumed to be public common knowledge.



Mechanism Design and 
Equilibria

• Common assumptions of mechanism design


• Agents are rational utility maximizers (rational in a very 
strong sense)


• Will play a (Bayes-)Nash equilibrium


• Designing a mechanism that will have a good equilibrium 
may be hard. Common approach: require 
strategyproofness, simplifying agent behavior; then get 
the best mechanism you can.



Strategyproofness
• Strategyproofness (aka incentive compatibility, truthfulness) means that 

agents cannot improve their utility by lying about their type.


• Two versions


• Dominant-strategy incentive compatible (DSIC): no matter what 
anyone else does, you should tell the truth. (we will focus on this one)


• Bayes-Nash incentive compatible: in expectation over possible 
opponent types, everybody’s best choice is to tell the truth assuming 
everybody else does.


• If strategyproofness holds, then rational agents will tell the truth. No 
more worrying about figuring out equilibrium behavior!
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RegretNet Paper
• The ideal auction mechanism: strategyproof while maximizing 

revenue


• Nobody knows how to do this except in limited cases, even though 
a lot of really smart people have been working hard for 30+ years


• Dütting et al, “Optimal Auctions Through Deep Learning”: 
parameterize auction mechanism (function from bids to winners/
payments) as deep neural network:


• Maximize revenue => have a revenue term in the loss function


• Strategyproof => compute strategic inputs via gradient ascent, 
train on these to reduce how much strategyproofness is violated



Auction process
k items, n players 

Publicly known 
valuation distribution 

P(vi)

vi ∈ ℝk

bi fi(b1, …, bn)

ai ∈ ℝk

pi ∈ ℝ

ui =
k

∑
j=1

aijvij − pi

Private 
valuations

Players strategically choose 
bids and send them to the 

allocation mechanism f

The mechanism 
outputs allocations 

of items, and a 
payment to charge 

each player

Players receive a utility 
based on allocations, 
payments, and their 

private valuation.



Desirable properties of 
auctions

• Individual rationality (IR): nobody who is truthful ever pays 
more than their expected value for the allocation


• Dominant-strategy incentive compatible (DSIC): it is 
always optimal to bid your true valuation, no matter what 
anyone else does: 


• Revenue maximization: we want  to be as large as 

we can get away with

∑
i

pi

∀v−i : rgti = max
bi

ui(bi, v−i) − ui(vi, v−i) = 0



Network Architecture
• Network architecture of  will ensure allocations make sense, and also enforce 

individual rationality


• Feedforward, with output activations depending on utility structure:


• Additive utilities: softmax to ensure  for all items j.


• Unit-demand utilities: optimal allocation is one item to one agent, so take the 
min of row-wise and column-wise softmax to ensure  and 


• Combinatorial utilities: complicated thing with even more softmax


• Enforce IR: first compute allocation, then compute expected utility of allocation, 
then final payments are a fraction of expected utility.

f

∑
i

aij ≤ 1

∑
i

aij ≤ 1 ∑
j

aij ≤ 1



Estimating regret

∇bi
ui(bi, v−i)≈ arg max

bi

rgti(vi)

Just do gradient ascent on utility

Networks and inputs relatively small, so can do many steps (25 train time, 1000 test 
time)

How to estimate  ? max
bi

ui(bi, v−i) − ui(vi, v−i)

(Easily implemented in PyTorch by just 
setting requires_grad=True on input 

tensors)



Learning procedure for 
auctions

• Dataset is a large number of randomly sampled valuation 
profiles 


• Loss on a single valuation profile:


      




• Minimize L by minibatch SGD, just like any neural network.

v

L(v, f(v)) = − ∑
i

pi + ∑
i

λirgti(v) +
ρ
2 (∑

i

rgti(v))
2



Successful results

Dotted lines denote theoretically optimal mechanism; orange/red is what neural 
networks learned after training



Successful results

They also beat a bunch of strong 
baselines in more complicated 
situations where the optimal 

mechanism is not known
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Differentiable Optimization
• Solvers for optimization problems are quite complicated, so it’s somewhat surprising 

that you can stick an optimization problem in the middle of a neural network as a 
network layer.





• Uses


• hard constraints on network output


• some existing layers can be reformulated as optimization (e.g. softmax)


• meta-learning: learn features from neural network that make e.g. SVM perform well


• Directly learning unknown parameters of optimization problems

zi−1 = σ(Wi−1zi−2 + bi−1)
zi = arg minz f(z, θ, zi−1) s.t. z ∈ 𝒦

zi+1 = σ(Wi+1zi + bi+1)
⋯



Example Formulation
• “Differentiable optimization as a layer”: with network parameters 

, optimization layer  outputs:


• 


• subject to 


• We would like to compute  in order to backpropagate.


• This formulation is from OptNet, with additional explanation from https://arxiv.org/pdf/
1804.05098.pdf. You can do all this for general convex programs, not just QPs.

θ zi

zi = arg min
z

1
2

zTQ(θ)z + q(θ)Tz

A(θ)z = b(θ), G(θ)z ≤ h(θ)

dzi

dθ

https://arxiv.org/pdf/1804.05098.pdf
https://arxiv.org/pdf/1804.05098.pdf


Implicit function theorem 
(computer scientist version)
• Let  be a “solution map”, representing the set 

of feasible & optimal solutions to some problem.


• If everything is “sufficiently” “nice” this will have a single value (i.e. it is 
implicitly a function), at which everything is differentiable, etc. and 
mathematicians are unable to come up with counterexamples to ruin 
your day.


• Then we have , where  
are Jacobians wrt the two inputs.


• In other words, given derivatives of  wrt variables and parameters, 
we can compute derivatives of the optimal point wrt parameters, 
evaluated at the optimal point.

S(θ) = {x |g(θ, x) = 0}

DθS(θ) = − Dxg(θ, S(θ))−1Dθg(θ, S(θ)) Dx, Dθ

g



KKT conditions and solution 
map for OptNet

• KKT conditions (primal-dual solution )


•  (stationarity)


•  (primal, dual feasibility)


•  (complementary slackness)


• Given a feasible point (and some technical assumptions) we have that


•
 only at the optimal point. This defines 

our solution map.

s = (z*, ν*, λ*)

∇zℒ(z*, ν*, λ*, θ) = Qz* + q + ATν* + GTλ* = 0

Az* − b = 0,Gz* − h ≤ 0,λ* ≥ 0

diag(λ*)(Gz* − h) = 0

g(s, θ) =
∇zℒ(z, ν, λ, θ)

diag(λ)(Gz − h)
Az − b

= 0



Implicit function theorem on 
KKT conditions

•



•



• Solve the system  to get derivatives; various tricks to 
do this more efficiently


• If Q is 0, the matrix is singular. This means our QP must actually have a 
quadratic term to be differentiable (can add a small “fudge factor” to 
differentiate LPs).

Dxg(s, θ) =
Q GT AT

diag(λ)G diag(Gx − h) 0
A 0 0

Dθg(s, θ) =
dQz + Dθq + dGTλ + dATν

diag(λ)(dGz − Dθh)
dAz − Dθb

−Dxg(s, θ)−1Dθg(s, θ)



Using this for mechanism 
design?

• Lots of mechanism design problems have hard resource 
constraints. Often the welfare maximizing solution is a 
convex optimization problem.


• We can augment the objective to such a problem with 
input from a neural network, to learn to control the 
solution.



Example: kidney exchange

• You all know about the kidneys.


• Interesting problem in kidney exchange: hospitals may be 
incentivized to hide patient-donor pairs from the central 
mechanism and match them with each other internally. 
We would like a strategyproof mechanism for deriving 
matchings


• People have come up with theoretical strategyproof 
mechanisms in some settings. But why not try to learn 
them?



Differentiable optimization 
for kidney exchange

• Define an optimization problem


• 


• Vector  (and rows of ) is indexed by patient-donor pair type. Each column of  
represents a valid matching structure;  is the reported pool of patient-donor 
pairs from hospitals.


• Find maximum weight matching, biased from optimum by learned neural 
network


• By rights we need integer constraints but we ignore that during training.


• We can learn  using a RegretNet-style training process. Maximize global 
welfare (not revenue) s.t. strategyproofness constraints

max
x

wT x − k∥f(b, θ) − x∥  s.t. 

Sx ≤ b

b S S
b

f(b, θ)



Questions?


