
“Differentiable
Economics”

Agenda
• Mechanism design

• What is it, why do we care, what are the problems?

• Paper 1: RegretNet

• Paper 2: Differentiable Optimization

• Extensions of RegretNet

• Strategyproof differentiable kidney exchange
optimization problems

Why “differentiable
economics”?

• Differentiable programming — term coined by Yann LeCun

• “OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep
Learning est mort. Vive Differentiable Programming! …Yeah,
Differentiable Programming is little more than a rebranding of the modern
collection Deep Learning techniques…”

• “But the important point is that people are now building a new kind of
software by assembling networks of parameterized functional blocks and
by training them from examples using some form of gradient-based
optimization. “

• Differentiable economics — term coined in a similar spirit by David Parkes

• Combines the same basic building blocks to create mechanisms which
are differentiable, allowing them to be optimized using gradient descent

https://www.facebook.com/yann.lecun/posts/10155003011462143

Mechanism Design
• Mechanism design is the design of economic mechanisms — a mechanism is run

by a central coordinator, who asks agents to report their preferences and then
aggregates them to make some kind of resource allocation.

• Common goals of mechanism design

• Maximize global welfare

• Ensure some notion of fairness

• Maximize revenue to the central agent

• Agents generally have private information about preferences (their type), and can
choose to lie about them to the coordinator, but often the distribution over types is
assumed to be public common knowledge.

Mechanism Design and
Equilibria

• Common assumptions of mechanism design

• Agents are rational utility maximizers (rational in a very
strong sense)

• Will play a (Bayes-)Nash equilibrium

• Designing a mechanism that will have a good equilibrium
may be hard. Common approach: require
strategyproofness, simplifying agent behavior; then get
the best mechanism you can.

Strategyproofness
• Strategyproofness (aka incentive compatibility, truthfulness) means that

agents cannot improve their utility by lying about their type.

• Two versions

• Dominant-strategy incentive compatible (DSIC): no matter what
anyone else does, you should tell the truth. (we will focus on this one)

• Bayes-Nash incentive compatible: in expectation over possible
opponent types, everybody’s best choice is to tell the truth assuming
everybody else does.

• If strategyproofness holds, then rational agents will tell the truth. No
more worrying about figuring out equilibrium behavior!

Agenda
• Mechanism design

• What is it, why do we care, what are the problems?

• Paper 1: RegretNet

• Paper 2: Differentiable Optimization

• Extensions of RegretNet

• Strategyproof differentiable kidney exchange
optimization problems

RegretNet Paper
• The ideal auction mechanism: strategyproof while maximizing

revenue

• Nobody knows how to do this except in limited cases, even though
a lot of really smart people have been working hard for 30+ years

• Dütting et al, “Optimal Auctions Through Deep Learning”:
parameterize auction mechanism (function from bids to winners/
payments) as deep neural network:

• Maximize revenue => have a revenue term in the loss function

• Strategyproof => compute strategic inputs via gradient ascent,
train on these to reduce how much strategyproofness is violated

Auction process
k items, n players

Publicly known
valuation distribution

P(vi)

vi ∈ ℝk

bi fi(b1, …, bn)

ai ∈ ℝk

pi ∈ ℝ

ui =
k

∑
j=1

aijvij − pi

Private
valuations

Players strategically choose
bids and send them to the

allocation mechanism f

The mechanism
outputs allocations

of items, and a
payment to charge

each player

Players receive a utility
based on allocations,
payments, and their

private valuation.

Desirable properties of
auctions

• Individual rationality (IR): nobody who is truthful ever pays
more than their expected value for the allocation

• Dominant-strategy incentive compatible (DSIC): it is
always optimal to bid your true valuation, no matter what
anyone else does:

• Revenue maximization: we want to be as large as

we can get away with

∑
i

pi

∀v−i : rgti = max
bi

ui(bi, v−i) − ui(vi, v−i) = 0

Network Architecture
• Network architecture of will ensure allocations make sense, and also enforce

individual rationality

• Feedforward, with output activations depending on utility structure:

• Additive utilities: softmax to ensure for all items j.

• Unit-demand utilities: optimal allocation is one item to one agent, so take the
min of row-wise and column-wise softmax to ensure and

• Combinatorial utilities: complicated thing with even more softmax

• Enforce IR: first compute allocation, then compute expected utility of allocation,
then final payments are a fraction of expected utility.

f

∑
i

aij ≤ 1

∑
i

aij ≤ 1 ∑
j

aij ≤ 1

Estimating regret

∇bi
ui(bi, v−i)≈ arg max

bi

rgti(vi)

Just do gradient ascent on utility

Networks and inputs relatively small, so can do many steps (25 train time, 1000 test
time)

How to estimate ? max
bi

ui(bi, v−i) − ui(vi, v−i)

(Easily implemented in PyTorch by just
setting requires_grad=True on input

tensors)

Learning procedure for
auctions

• Dataset is a large number of randomly sampled valuation
profiles

• Loss on a single valuation profile:

• Minimize L by minibatch SGD, just like any neural network.

v

L(v, f(v)) = − ∑
i

pi + ∑
i

λirgti(v) +
ρ
2 (∑

i

rgti(v))
2

Successful results

Dotted lines denote theoretically optimal mechanism; orange/red is what neural
networks learned after training

Successful results

They also beat a bunch of strong
baselines in more complicated
situations where the optimal

mechanism is not known

Agenda
• Mechanism design

• What is it, why do we care, what are the problems?

• Paper 1: RegretNet

• Paper 2: Differentiable Optimization

• Extensions of RegretNet

• Strategyproof differentiable kidney exchange
optimization problems

Differentiable Optimization
• Solvers for optimization problems are quite complicated, so it’s somewhat surprising

that you can stick an optimization problem in the middle of a neural network as a
network layer.

• Uses

• hard constraints on network output

• some existing layers can be reformulated as optimization (e.g. softmax)

• meta-learning: learn features from neural network that make e.g. SVM perform well

• Directly learning unknown parameters of optimization problems

zi−1 = σ(Wi−1zi−2 + bi−1)
zi = arg minz f(z, θ, zi−1) s.t. z ∈ 𝒦

zi+1 = σ(Wi+1zi + bi+1)
⋯

Example Formulation
• “Differentiable optimization as a layer”: with network parameters

, optimization layer outputs:

•

• subject to

• We would like to compute in order to backpropagate.

• This formulation is from OptNet, with additional explanation from https://arxiv.org/pdf/
1804.05098.pdf. You can do all this for general convex programs, not just QPs.

θ zi

zi = arg min
z

1
2

zTQ(θ)z + q(θ)Tz

A(θ)z = b(θ), G(θ)z ≤ h(θ)

dzi

dθ

https://arxiv.org/pdf/1804.05098.pdf
https://arxiv.org/pdf/1804.05098.pdf

Implicit function theorem
(computer scientist version)
• Let be a “solution map”, representing the set

of feasible & optimal solutions to some problem.

• If everything is “sufficiently” “nice” this will have a single value (i.e. it is
implicitly a function), at which everything is differentiable, etc. and
mathematicians are unable to come up with counterexamples to ruin
your day.

• Then we have , where
are Jacobians wrt the two inputs.

• In other words, given derivatives of wrt variables and parameters,
we can compute derivatives of the optimal point wrt parameters,
evaluated at the optimal point.

S(θ) = {x |g(θ, x) = 0}

DθS(θ) = − Dxg(θ, S(θ))−1Dθg(θ, S(θ)) Dx, Dθ

g

KKT conditions and solution
map for OptNet

• KKT conditions (primal-dual solution)

• (stationarity)

• (primal, dual feasibility)

• (complementary slackness)

• Given a feasible point (and some technical assumptions) we have that

•
 only at the optimal point. This defines

our solution map.

s = (z*, ν*, λ*)

∇zℒ(z*, ν*, λ*, θ) = Qz* + q + ATν* + GTλ* = 0

Az* − b = 0,Gz* − h ≤ 0,λ* ≥ 0

diag(λ*)(Gz* − h) = 0

g(s, θ) =
∇zℒ(z, ν, λ, θ)

diag(λ)(Gz − h)
Az − b

= 0

Implicit function theorem on
KKT conditions

•

•

• Solve the system to get derivatives; various tricks to
do this more efficiently

• If Q is 0, the matrix is singular. This means our QP must actually have a
quadratic term to be differentiable (can add a small “fudge factor” to
differentiate LPs).

Dxg(s, θ) =
Q GT AT

diag(λ)G diag(Gx − h) 0
A 0 0

Dθg(s, θ) =
dQz + Dθq + dGTλ + dATν

diag(λ)(dGz − Dθh)
dAz − Dθb

−Dxg(s, θ)−1Dθg(s, θ)

Using this for mechanism
design?

• Lots of mechanism design problems have hard resource
constraints. Often the welfare maximizing solution is a
convex optimization problem.

• We can augment the objective to such a problem with
input from a neural network, to learn to control the
solution.

Example: kidney exchange

• You all know about the kidneys.

• Interesting problem in kidney exchange: hospitals may be
incentivized to hide patient-donor pairs from the central
mechanism and match them with each other internally.
We would like a strategyproof mechanism for deriving
matchings

• People have come up with theoretical strategyproof
mechanisms in some settings. But why not try to learn
them?

Differentiable optimization
for kidney exchange

• Define an optimization problem

•

• Vector (and rows of) is indexed by patient-donor pair type. Each column of
represents a valid matching structure; is the reported pool of patient-donor
pairs from hospitals.

• Find maximum weight matching, biased from optimum by learned neural
network

• By rights we need integer constraints but we ignore that during training.

• We can learn using a RegretNet-style training process. Maximize global
welfare (not revenue) s.t. strategyproofness constraints

max
x

wT x − k∥f(b, θ) − x∥ s.t.

Sx ≤ b

b S S
b

f(b, θ)

Questions?

