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Lecture 1

Introduction

In which we describe what this course is about and give a simple example of an approximation
algorithm

1.1 Overview

In this course we study algorithms for combinatorial optimization problems. Those are
the type of algorithms that arise in countless applications, from billion-dollar operations to
everyday computing task; they are used by airline companies to schedule and price their
flights, by large companies to decide what and where to stock in their warehouses, by
delivery companies to decide the routes of their delivery trucks, by Netflix to decide which
movies to recommend you, by a gps navigator to come up with driving directions and by
word-processors to decide where to introduce blank spaces to justify (align on both sides)
a paragraph.

In this course we will focus on general and powerful algorithmic techniques, and we will
apply them, for the most part, to highly idealized model problems.

Some of the problems that we will study, along with several problems arising in practice,
are NP-hard, and so it is unlikely that we can design exact efficient algorithms for them.
For such problems, we will study algorithms that are worst-case efficient, but that output
solutions that can be sub-optimal. We will be able, however, to prove worst-case bounds
to the ratio between the cost of optimal solutions and the cost of the solutions provided
by our algorithms. Sub-optimal algorithms with provable guarantees about the quality of
their output solutions are called approximation algorithms.

The content of the course will be as follows:

• Simple examples of approximation algorithms. We will look at approximation algo-
rithms for the Vertex Cover and Set Cover problems, for the Steiner Tree Problem
and for the Traveling Salesman Problem. Those algorithms and their analyses will
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2 LECTURE 1. INTRODUCTION

be relatively simple, but they will introduce a number of key concepts, including the
importance of getting upper bounds on the cost of an optimal solution.

• Linear Programming. A linear program is an optimization problem over the real
numbers in which we want to optimize a linear function of a set of real variables
subject to a system of linear inequalities about those variables. For example, the
following is a linear program:

maximize x1 + x2 + x3

Subject to :
2x1 + x2 ≤ 2
x2 + 2x3 ≤ 1

(A linear program is not a program as in computer program; here programming is used
to mean planning.) An optimum solution to the above linear program is, for example,
x1 = 1/2, x2 = 1, x3 = 0, which has cost 1.5. One way to see that it is an optimal
solution is to sum the two linear constraints, which tells us that in every admissible
solution we have

2x1 + 2x2 + 2x3 ≤ 3

that is, x1 + x2 + x3 ≤ 1.5. The fact that we were able to verify the optimality of a
solution by summing inequalities is a special case of the important theory of duality
of linear programming.

A linear program is an optimization problem over real-valued variables, while this
course is about combinatorial problems, that is problems with a finite number of
discrete solutions. The reasons why we will study linear programming are that

1. Linear programs can be solved in polynomial time, and very efficiently in practice;

2. All the combinatorial problems that we will study can be written as linear pro-
grams, provided that one adds the additional requirement that the variables only
take integer value.

This leads to two applications:

1. If we take the integral linear programming formulation of a problem, we remove
the integrality requirement, we solve it efficient as a linear program over the real
numbers, and we are lucky enough that the optimal solution happens to have
integer values, then we have the optimal solution for our combinatorial problem.
For some problems, it can be proved that, in fact, this will happen for every
input.

2. If we take the integral linear programming formulation of a problem, we remove
the integrality requirement, we solve it efficient as a linear program over the
real numbers, we find a solution with fractional values, but then we are able to
“round” the fractional values to integer ones without changing the cost of the
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solution too much, then we have an efficient approximation algorithm for our
problem.

• Approximation Algorithms via Linear Programming. We will give various examples in
which approximation algorithms can be designed by “rounding” the fractional optima
of linear programs.

• Exact Algorithms for Flows and Matchings. We will study some of the most elegant
and useful optimization algorithms, those that find optimal solutions to “flow” and
“matching” problems.

• Linear Programming, Flows and Matchings. We will show that flow and matching
problems can be solved optimally via linear programming. Understanding why will
make us give a second look at the theory of linear programming duality.

• Online Algorithms. An online algorithm is an algorithm that receives its input as a
stream, and, at any given time, it has to make decisions only based on the partial
amount of data seen so far. We will study two typical online settings: paging (and,
in general, data transfer in hierarchical memories) and investing.

1.2 The Vertex Cover Problem

1.2.1 Definitions

Given an undirected graph G = (V,E), a vertex cover is a subset of vertices C ⊆ V such
that for every edge (u, v) ∈ E at least one of u or v is an element of C.

In the minimum vertex cover problem, we are given in input a graph and the goal is to find
a vertex cover containing as few vertices as possible.

The minimum vertex cover problem is very related to the maximum independent set prob-
lem. In a graph G = (V,E) an independent set is a subset I ⊆ V of vertices such that
there is no edge (u, v) ∈ E having both endpoints u and v contained in I. In the maximum
independent set problem the goal is to find a largest possible independent set.

It is easy to see that, in a graph G = (V,E), a set C ⊆ V is a vertex cover if and only if its
complement V −C is an independent set, and so, from the point of view of exact solutions,
the two problems are equivalent: if C is an optimal vertex cover for the graph G then V −C
is an optimal independent set for G, and if I is an optimal independent set then V − I is
an optimal vertex cover.

From the point of view of approximation, however, the two problems are not equivalent. We
are going to describe a linear time 2-approximate algorithm for minimum vertex cover, that
is an algorithm that finds a vertex cover of size at most twice the optimal size. It is known,
however, that no constant-factor, polynomial-time, approximation algorithms can exist for
the independent set problem. To see why there is no contradiction (and how the notion
of approximation is highly dependent on the cost function), suppose that we have a graph
with n vertices in which the optimal vertex cover has size .9 · n, and that our algorithm
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finds a vertex cover of size n − 1. Then the algorithm finds a solution that is only about
11% larger than the optimum, which is not bad. From the point of view of independent set
size, however, we have a graph in which the optimum independent set has size n/10, and
our algorithm only finds an independent set of size 1, which is terrible

1.2.2 The Algorithm

The algorithm is very simple, although not entirely natural:

• Input: graph G = (V,E)

• C := ∅

• while there is an edge (u, v) ∈ E such that u 6∈ C and v 6∈ C

– C := C ∪ {u, v}

• return C

We initialize our set to the empty set, and, while it fails to be a vertex cover because some
edge is uncovered, we add both endpoints of the edge to the set. By the time we are finished
with the while loop, C is such that for every edge (u, v) ∈ E, either u ∈ C or v ∈ C (or
both), that is, C is a vertex cover.

To analyze the approximation, let opt be the number of vertices in a minimal vertex cover,
then we observe that

• If M ⊆ E is a matching, that is, a set of edges that have no endpoint in common, then
we must have opt ≥ |M |, because every edge in M must be covered using a distinct
vertex.

• The set of edges that are considered inside the while loop form a matching, because if
(u, v) and (u′, v′) are two edges considered in the while loop, and (u, v) is the one that
is considered first, then the set C contains u and v when (u′, v′) is being considered,
and hence u, v, u′, v′ are all distinct.

• If we let M denote the set of edges considered in the while cycle of the algorithm, and
we let Cout be the set given in output by the algorithm, then we have

|Cout| = 2 · |M | ≤ 2 · opt

As we said before, there is something a bit unnatural about the algorithm. Every time we
find an edge (u, v) that violates the condition that C is a vertex cover, we add both vertices
u and v to C, even though adding just one of them would suffice to cover the edge (u, v).
Isn’t it an overkill?

Consider the following alternative algorithm that adds only one vertex at a time:
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• Input: graph G = (V,E)

• C := ∅

• while there is an edge (u, v) ∈ E such that u 6∈ C and v 6∈ C

– C := C ∪ {u}

• return C

This is a problem if our graph is a “star.” Then the optimum is to pick the center, while
the above algorithm might, in the worse case, pick all the vertices except the center.

Another alternative would be a greedy algorithm:

• Input: graph G = (V,E)

• C := ∅

• while C is not a vertex cover

– let u be the vertex incident on the most uncovered edges

– C := C ∪ {u}

• return C

The above greedy algorithm also works rather poorly. For every n, we can construct an n
vertex graph where the optimum is roughly n/ lnn, but the algorithm finds a solution of
cost roughly n− n/ lnn, so that it does not achieve a constant-factor approximation of the
optimum. We will return to this greedy approach and to these bad examples when we talk
about the minimum set cover problem.
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Lecture 2

Steiner Tree Approximation

In which we define the Steiner Tree problem, we show the equivalence of metric and general
Steiner tree, and we give a 2-approximate algorithm for both problems.

2.1 Approximating the Metric Steiner Tree Problem

The Metric Steiner Tree Problem is defined as follows: the input is a set X = R∪S of points,
where R is a set of required points and S is a set of optional points, and a symmetric distance
function d : X ×X → R≥0 that associates a non-negative distance d(x, y) = d(y, x) ≥ 0 to
every pair of points. We restrict the problem to the case in which d satisfies the triangle
inequality, that is,

∀x, y, z ∈ X.d(x, z) ≤ d(x, y) + d(y, z)

In such a case, d is called a (semi-)metric, hence the name of the problem.

The goal is to find a tree T = (V,E), where V is any set R ⊆ V ⊆ X of points that includes
all of the required points, and possibly some of the optional points, such that the cost

costd(T ) :=
∑

(u,v)∈E

d(u, v)

of the tree is minimized.

This problem is very similar to the minimum spanning tree problem, which we know to have
an exact algorithm that runs in polynomial (in fact, nearly linear) time. In the minimum
spanning tree problem, we are given a weighted graph, which we can think of as a set of
points together with a distance function (which might not satisfy the triangle inequality),
and we want to find the tree of minimal total length that spans all the vertices. The
difference is that in the minimum Steiner tree problem we only require to span a subset of

7



8 LECTURE 2. STEINER TREE APPROXIMATION

vertices, and other vertices are included only if they are beneficial to constructing a tree of
lower total length.

We consider the following very simple approximation algorithm: run a minimum spanning
tree algorithm on the set of required vertices, that is, find the best possible tree that uses
none of the optional vertices.

We claim that this algorithm is 2-approximate, that is, it finds a solution whose cost is at
most twice the optimal cost.

To do so, we prove the following.

Lemma 2.1 Let (X = R ∪ S, d) be an instance of the metric Steiner tree problem, and
T = (V,E) be a Steiner tree with R ⊆ V ⊆ X.

Then there is a tree T ′ = (R,E′) which spans the vertices in R and only the vertices in R
such that

costd(T ′) ≤ 2 · costd(T )

In particular, applying the Lemma to the optimal Steiner tree we see that there is a spanning
tree of R whose cost is at most twice the cost of the optimal Steiner tree. This also means
that the minimal spanning tree of R also has cost at most twice the cost of the optimal
Steiner tree.

Proof: [Of Lemma 2.1] Consider a DFS traversal of T , that is, a sequence

x0, x1, x2, . . . , xm = x0

listing the vertices of T in the order in which they are considered during a DFS, including
each time we return to a vertex at the end of each recursive call. The sequence describes
a cycle over the elements of V whose total length

∑m
i=0 d(xi, xi+1) is precisely 2 · costd(T ),

because the cycle uses each edge of the tree precisely twice.

Let now y0, y1, . . . , yk be the sequence obtained from x0, . . . , xm by removing the vertices
in S and keeping only the first occurrent of each vertex in R.

Then y0, . . . , yk is a path that includes all the vertices of R, and no other vertex, and its
cost

∑k
i=0 d(yi, yi+1) is at most the cost of the cycle x0, x1, x2, . . . , xm (here we are using

the triangle inequality), and so it is at most 2 · costd(T ).

But now note that y0, . . . , yk, being a path, is also a tree, and so we can take T ′ to be tree
(R,E′) where E′ is the edge set {(yi, yi+1)}i=0,...,k. �

For example, if we have an instance in which R = {a, b, c, d, e, f}, S = {g, h}, and the
distance function d(·, ·) assigns distance 1 to the points connected by an edge in the graph
below, and distance 2 otherwise
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Then the following is a Steiner tree for our input whose cost is 8:

We use the argument in the proof of the Lemma to show that there is a Spanning tree of
R of cost at most 16. (In fact we will do better.)

The order in which we visit vertices in a DFS of T is a → g → d → g → f → g → a →
h → c → h → b → h → a → e → a. If we consider it as a loop that starts at a and goes
back to a after touching all vertices, some vertices more than once, then the loop has cost
16, because it uses every edge exactly twice.

Now we note that if we take the DFS traversal, and we skip all the optional vertices and all
the vertices previously visited, we obtain an order in which to visit all the required vertices,
and no other vertex. In the example the order is a→ d→ f → c→ b→ e.

Because this path was obtained by “shortcutting” a path of cost at most twice the cost of
T , and because we have the triangle inequality, the path that we find has also cost at most



10 LECTURE 2. STEINER TREE APPROXIMATION

twice that of T . In our example, the cost is just 10. Since a path is, in particular, a tree,
we have found a spanning tree of R whose cost is at most twice the cost of T .

The factor of 2 in the lemma cannot be improved, because there are instances of the Metric
Steiner Tree problem in which the cost of the minimum spanning tree of R is, in fact,
arbitrarily close to twice the cost of the minimum steiner tree.

Consider an instance in which S = {v0}, R = {v1, . . . , vn}, d(v0, vi) = 1 for i = 1, . . . , n,
and d(vi, vj) = 2 for all 1 ≤ i < j ≤ n. That is, consider an instance in which the required
points are all at distance two from each other, but they are all at distance one from the
unique optional point. Then the minimum Steiner tree has v0 as a root and the nodes
v1, . . . , vn as leaves, and it has cost n, but the minimum spanning tree of R has cost 2n− 2,
because it is a tree with n nodes and n− 1 edges, and each edge is of cost 2.

2.2 Metric versus General Steiner Tree

The General Steiner Tree problem is like the Metric Steiner Tree problem, but we allow
arbitrary distance functions.

In this case, it is not true any more that a minimum spanning tree of R gives a good
approximation: consider the case in which R = {a, b}, S = {c}, d(a, b) = 10100, d(a, c) = 1
and d(b, c) = 1. Then the minimum spanning tree of R has cost 10100 while the minimum
Steiner tree has cost 2.

We can show, however, that our 2-approximation algorithm for Metric Steiner Tree can be
turned, with some care, into a 2-approximation algorithm for General Steiner Tree.

Lemma 2.2 For every c ≥ 1, if there is a polynomial time c-approximate algorithm for
Metric Steiner Tree, then there is a polynomial time c-approximate algorithm for General
Steiner Tree.

Proof: Suppose that we have a polynomial-time c-approximate algorithm A for Metric
Steiner Tree and that we are given in input an instance (X = R ∪ S, d) of General Steiner
Tree. We show how to find, in polynomial time, a c-approximate solution for (X, d).

For every two points x, y ∈ X, let d′(x, y) be the length of a shortest path from x to y in
the weighted graph of vertex set X of weights d(·, ·). Note that d′(·, ·) is a distance function
that satisfies the triangle inequality, because for every three points x, y, z it must be the
case that the length of the shortest path from x to z cannot be any more than the length
of the shortest path from x to y plus the length of the shortest path from y to z.

This means that (X, d′) is an instance of Metric Steiner Tree, and we can apply algorithm
A to it, and find a tree T ′ = (V ′, E) of cost

costd′(T ′) ≤ c · opt(X, d′)

Now notice that, for every pair of points, d′(x, y) ≤ d(x, y), and so if T ∗ is the optimal tree
of our original input (X, d) we have
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opt(X, d′) ≤ costd′(T ∗) ≤ costd(T ∗) = opt(X, d)

So putting all together we have

costd′(T ′) ≤ c · opt(X, d)

Now, from T ′, construct a graph G = (V,E) by replacing each edge (x, y) by the shortest
path from x to y according to d(·). By our construction we have

costd(G) =
∑

(x,y)∈E

d(x, y) ≤
∑

(x,y)∈E′
d′(x, y) = costd′(T ′)

Note also that G is a connected graph.

The reason why we have an inequality instead of an equality is that certain edges of G might
belong to more than one shortest path, so they are counted only once on the left-hand side.

Finally, take a minimum spanning tree T of G according to the weights d(·, ·). Now T is a
valid Steiner tree, and we have

costd(T ) ≤ costd(G) ≤ c · opt(X, d)

�
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Lecture 3

TSP and Eulerian Cycles

In which we prove the equivalence of three versions of the Traveling Salesman Problem, we
provide a 2-approximate algorithm, we review the notion of Eulerian cycle, we think of the
TSP as the problem of finding a minimum-cost connected Eulerian graph, and we revisit the
2-approximate algorithm from this perspective.

3.1 The Traveling Salesman Problem

In the Traveling Salesman Problem (abbreviated TSP) we are given a set of points X and
a symmetric distance function d : X ×X → R≥0. The goal is to find a cycle that reaches
all points in X and whose total length is as short as possible.

For example, a shuttle driver that picks up seven people at SFO and needs to take them
to their home and then go back to the airport faces a TSP instance in which X includes
eight points (the seven home addresses and the airport), and the distance function is the
driving time between two places. A DHL van driver who has to make a series of delivery
and then go back to the warehouse has a similar problem. Indeed TSP is a basic model for
several concrete problems, and it one of the most well studied problems in combinatorial
optimization.

There are different versions of this problem depending on whether we require d(·, ·) to satisfy
the triangle inequality or not, and whether we allow the loop to pass through the same point
more than once.

1. General TSP without repetitions (General TSP-NR): we allow arbitrary symmetric
distance functions, and we require the solution to be a cycle that contains every point
exactly once;

2. General TSP with repetitions (General TSP-R): we allow arbitrary symmetric distance
functions, and we allow all cycles as an admissible solution, even those that contain
some point more than once;

13



14 LECTURE 3. TSP AND EULERIAN CYCLES

3. Metric TSP without repetitions (Metric TSP-NR): we only allow inputs in which the
distance function d(·, ·) satisfies the triangle inequality, that is

∀x, y, z ∈ X. d(x, z) ≤ d(x, y) + d(y, z)

and we only allow solutions in which each point is reached exactly once;

4. Metric TSP with repetitions (Metric TSP-R): we only allow inputs in which the dis-
tance function satisfies the triangle inequality, and we allow all cycles as admissible
solutions, even those that contain some point more than once.

For all versions, it is NP-hard to find an optimal solution.

If we allow arbitrary distance functions, and we require the solution to be a cycle that
reaches every point exactly once, then we have a problem for which no kind of efficient
approximation is possible.

Fact 3.1 If P 6= NP then there is no polynomial-time constant-factor approximation algo-
rithm for General TSP-NR.

More generally, if there is a function r : N → N such that r(n) can be computable in time
polynomial in n (for example, r(n) = 2100 · 2n2

), and a polynomial time algorithm that, on
input an instance (X, d) of General TSP-NR with n points finds a solution of cost at most
r(n) times the optimum, then P = NP.

The other three versions, however, are completely equivalent from the point of view of
approximation and, as we will see, can be efficiently approximated reasonably well.

Lemma 3.2 For every c ≥ 1, there is a polynomial time c-approximate algorithm for Metric
TSP-NR if and only if there is a polynomial time c-approximate approximation algorithm
for Metric TSP-R. In particular:

1. If (X, d) is a Metric TSP input, then the cost of the optimum is the same whether or
not we allow repetitions.

2. Every c-approximate algorithm for Metric TSP-NR is also a c-approximate algorithm
for Metric TSP-R.

3. Every c-approximate algorithm for Metric TSP-R can be turned into a c-approximate
algorithm for Metric TSP-NR after adding a linear-time post-processing step.

Proof: Let optTSP−R(X, d) be the cost of an optimal solution for (X, d) among all solutions
with or without repetitions, and optTSP−NR(X, d) be the cost of an optimal solution for
(X, d) among all solutions without repetitions. Then clearly in the former case we are
minimizing over a larger set of possible solutions, and so
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optTSP−R(X, d) ≤ optTSP−NR(X, d)

Consider now any cycle, possibly with repetitions, C = v0 → v1 → v2 → · · · vm−1 → vm =
v0. Create a new cycle C ′ from C by removing from C all the repeated occurrences of any
vertex. (With the special case of v0 which is repeated at the end.) For example, the cycle
C = a → c → b → a → d → b → a becomes a → c → b → d → a. Because of the triangle
inequality, the total length of C ′ is at most the total length of C, and C ′ is a cycle with no
repetitions. If we apply the above process by taking C to be the optimal solution of (X, d)
allowing repetitions, we see that

optTSP−R(X, d) ≥ optTSP−NR(X, d)

and so we have proved our first claim that optTSP−R(X, d) = optTSP−NR(X, d).

Regarding the second claim, suppose that we have a c-approximate algorithm for Metric
TSP-NR. Then, given an input (X, d) the algorithm finds a cycle C with no repetitions
such that

costd(C) ≤ c · optTSP−NR(X, d)

but C is also an admissible solution for the problem Metric TSP-R, and

costd(C) ≤ c · optTSP−NR(X, d) = c · optTSP−R(X, d)

and so our algorithm is also a c-approximate algorithm for optTSP−NR.

To prove the third claim, suppose we have a c-approximate algorithm for Metric TSP-R.
Then, given an input (X, d) the algorithm finds a cycle C, possibly with repetitions, such
that

costd(C) ≤ c · optTSP−R(X, d)

Now, convert C to a solution C ′ that has no repetitions and such that costd(C ′) ≤ costd(C)
as described above, and output the solution C ′. We have just described a c-approximate
algorithm for Metric TSP-NR, because

costd(C ′) ≤ costd(C) ≤ c · optTSP−R(X, d) = c · optTSP−NR(X, d)

�

Lemma 3.3 For every c ≥ 1, there is a polynomial time c-approximate algorithm for Metric
TSP-NR if and only if there is a polynomial time c-approximate approximation algorithm
for General TSP-R. In particular:
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1. Every c-approximate algorithm for General TSP-R is also a c-approximate algorithm
for Metric TSP-R.

2. Every c-approximate algorithm for Metric TSP-R can be turned into a c-approximate
algorithm for General TSP-R after adding polynomial-time pre-processing and post-
processing steps.

Proof: The first claim just follows from the fact that General and Metric TSP-R are the
same problem, except that in the general problem we allow a larger set of admissible inputs.

The proof of the second claim is similar to the proof that an approximation algorithm for
Metric Steiner Tree can be converted to an approximation algorithm for General Steiner
Tree.

Consider the following algorithm: on input an instance (X, d) of General TSP-R, we com-
pute the new distance function d′(·, ·) such that d′(x, y) is the length of a shortest path from
x to y in a weighted graph that has vertex set X and weights d(·, ·). Note that d′(·, ·) is a
distance function that satisfies the triangle inequality. We also compute the shortest path
between any pair x, y.

We then pass the input (X, d′) to our c-approximate algorithm for Metric TSP-R, and find
a cycle C ′ such that

costd′(C ′) ≤ c · optTSP−R(X, d′)

Note that, for every pair of points (x, y), we have d′(x, y) ≤ d(x, y) and so this implies that

optTSP−R(X, d′) ≤ optTSP−R(X, d)

Finally, we construct a cycle C by replacing each transition x → y in C ′ by the shortest
path from x to y according to d(·, ·). Because of the definition of d′(·, ·), we have

costd(C) = costd′(C ′)

and, combining the inequalities we have proved so far,

costd(C) ≤ c · optTSP−R(X, d)

meaning that the algorithm that we have described is a c-approximate algorithm for General
TSP-R. �

3.2 A 2-approximate Algorithm

When discussing approximation algorithms for the Minimum Steiner Tree problem in the
last lecture, we proved (without stating it explicitly) the following result.



3.2. A 2-APPROXIMATE ALGORITHM 17

Lemma 3.4 Let T (X,E) be a tree over a set of vertices X, and d : X × X → R≥0 a
symmetric distance function. Then there is a cycle C = v0 → v1 → · · · → vm = v0 that
reaches every vertex at least once, and such that

costd(C) = 2 · costd(T )

where costd(C) =
∑

i=0,...m−1 d(vi, vi+1) and costd(T ) =
∑

(x,y)∈E d(x, y).

The proof is simply to consider a DFS visit of the tree, starting at the root; we define C to
be the order in which vertices are visited, counting both the beginning of the recursive call
in which they are reached, and also the time when we return at a vertex after the end of a
recursive call originated at the vertex.

For example, revisiting an example from the last lecture, from the tree

a

e

 2

g

 1

h

 1

d

 1

f

 1

c

 1

b

 1

We get the cycle a → e → a → g → d → g → f → g → a → h → c → b → h → a, in
which every point is visited at least once (indeed, a number of times equal to its degree in
the tree) and every edge is traversed precisely twice.

Theorem 3.5 There is a polynomial-time 2-approximate algorithm for General TSP-R.
(And hence for Metric TSP-NR and Metric TSP-R.)

Proof: The algorithm is very simple: on input a (X, d) we find a minimum spanning tree
T of the weighted graph with vertex set X and weights d, and then we find the cycle C of
cost 2costd(T ) as in Lemma 3.4.

It remains to prove that optTSP−R(X, d) ≥ optMST (X, d) = costd(T ), which will then imply
that we have found a solution whose cost is ≤ 2 · optTSP−R(X, d), and that our algorithm
is 2-approximate.

Let C∗ be an optimal solution for (X, d), and consider the set of edges E∗ which are used
in the cycle, then (X,E∗) is a connected graph; take any spanning tree T ′ = (X,E′) of the
graph (X,E∗), then
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costd(T ′) ≤ costd(C∗) = optTSP−R(X, d)

because T ′ uses a subset of the edges of C∗. On the other hand, T ′ is a spanning tree, and
so

costd(T ′) ≥ optMST (X, d)

So we have

optTSP−R(X, d) ≥ optMST (X, d)

from which it follows that our algorithm achieves a 2-approximation.�

3.3 Eulerian Cycles

In this section we review the definition of Eulerian cycle. In the next section, we will use
this notion to give a new view of the 2-approximate algorithm of the previous section, and
we willnote that this new perspective suggests a potentially better algorithm, that we will
analyze in the next lecture.

In this section, it will be convenient to work with multi-graphs instead of graphs. In an
undirected multi-graph G = (V,E), E is a multi-set of pairs of vertices, that is, the same
pair (u, v) can appear more than once in E. Graphically, we can represent a multi-graph
in which there are k edges between u and v by drawing k parallel edges between u and v.
The degree of a vertex in a multigraph is the number of edges of the graph that have that
vertex as an endpoint, counting multiplicities.

Definition 3.6 (Eulerian Cycle) An Eulerian cycle in a multi-graph G = (V,E) is a
cycle v0 → v1 → · · · → vm = v0 such that the number of edges (u, v) in E is equal to the
number of times (u, v) is used in the cycle.

In a standard graph, a Eulerian cycle is a cycle that uses every edge of the graph exactly
once.

Theorem 3.7 A multi-graph G = (V,E) has an Eulerian cycle if and only if every vertex
has even degree and the vertices of positive degree are connected. Furthermore, there is a
polynomial time algorithm that, on input a connected graph in which every vertex has even
degree, outputs an Eulerian cycle.

Proof: If G is Eulerian, then the cycle gives a way to go from every vertex to every other
vertex, except the vertices of zero degree. Furthermore, if a vertex v appears k times in
the cycle, then there are 2k edges involving v in the cycle (because, each time v is reached,
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there is an edge used to reach v and one to leave from v); since the cycle contains all the
edges of the graph, it follows that v has degree 2k, thus all vertices have even degree. This
shows that if a graph contains an Eulerian cycle, then every vertex has even degree and all
the vertices of non-zero degree are connected.

For the other direction, we will prove by induction a slightly stronger statement, that is we
will prove that if G is a graph in which every vertex has even degree, then every connected
component of G with more than one vertex has a Eulerian cycle. We will proceed by
induction on the number of edges.

If there are zero edges, then every connected component has only one vertex and so there
is nothing to prove. This is the base case of the induction.

If we have a graph G = (V,E) with a non-empty set of edges and in which every vertex has
even degree, then let V1, . . . , Vm be the connected components of G that have at least two
vertices. If m ≥ 2, then every connected component has strictly fewer vertices than G, and
so we can apply the inductive hypothesis and find Eulerian cycles in each of V1,. . . ,Vm.

It remains to consider the case in which the set V ′ of vertices of positive degree of G are all
in the same connected component. Let G′ = (V ′, E′) be the restriction of G to the vertices
of V ′. Since every vertex of G′ has degree ≥ 2, there must be a cycle in G′. This is because
if a connected graph with n vertices has no cycles, then it is a tree, and so it has n − 1
edges; but in a graph in which there are n vertices and every vertex has degree ≥ 2, the
number of edges is at least 1

2 · 2 · n = n. Let C be a simple cycle (that is, a cycle with no
vertices repeated) in G′, and let G′′ be the graph obtained from G′ by removing the edges
of C. Since we have removed two edges from every vertex, we have that G′′ is still a graph
in which every vertex has even degree. Since G′′ has fewer edges than G′ we can apply the
induction hypothesis, and find a Eulerian cycle in each non-trivial connected component (a
connected component is trivial if it contains only an isolated vertex of degree zero) of G′′.
We can then patch together these Eulerian cycles with C as follows: we traverse C, starting
from any vertex; the first time we reach one of the non-trivial connected components of G′′,
we stop traversing C, and we traverse the Eulerian cycle of the component, then continue
on C, until we reach for the first time one of the non-trivial connected components of G′′

that we haven’t traversed yet, and so on. This describes a Eulerian path into all of G′

Finally, we note that this inductive argument can be converted into a recursive algorithm.
The main computation is to find the connected components of a graph, which can be done
in linear time, and to find a cycle in a given graph, which can also be done in linear time
using a DFS. Hence the algorithm runs in polynomial time.�

3.4 Eulerian Cycles and TSP Approximation

Let (X, d) be an instance of General TSP-R. Suppose that G = (X,E) is a connected multi-
graph with vertex set X that admits an Eulerian cycle C. Then the Eulerian cycle C is also
an admissible solution for the TSP problem, and its cost is

∑
(u,v)∈E d(u, v). Conversely,

if we take any cycle which is a TSP-R solution for the input (X, d), and we let E be the
multiset of edges used by the cycle (if the cycle uses the same edge more than once, we put
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as many copies of the edge in E as the number of times it appears in the cycle), then we
obtain a graph G = (X,E) which is connected and which admits an Eulerian cycle.

In other words, we can think of the General TSP-R as the following problem: given a set
of points X and a symmetric distance function d(·, ·), find the multi-set of edges E such
that the graph G = (V,E) is connected and Eulerian, and such that

∑
(u,v)∈E d(u, v) is

minimized.

The approach that we took in our 2-approximate algorithm was to start from a spanning
tree, which is guaranteed to be connected, and then take every edge of the spanning tree
twice, which guarantees that every vertex has even degree, and hence that an Eulerian cycle
exists. The reader should verify that if we take a tree, double all the edges, and then apply
to the resulting multigraph the algorithm of Theorem 3.7, we get the same cycle as the one
obtained by following the order in which the vertices of the tree are traversed in a DFS, as
in the proof of Lemma 3.4.

From this point of view, the 2-approximate algorithm seems rather wasteful: once we have
a spanning tree, our goal is to add edges so that we obtain an Eulerian graph in which every
vertex has even degree. Doubling every edge certainly works, but it is a rather “brute force”
approach: for example if a vertex has degree 11 in the tree, we are going to add another
11 edges incident on that vertex, while we could have “fixed” the degree of that vertex by
just adding one more edge. We will see next time that there is a way to implement this
intuition and to improve the factor of 2 approximation.



Lecture 4

TSP and Set Cover

In which we describe a 1.5-approximate algorithm for the Metric TSP, we introduce the Set
Cover problem, observe that it can be seen as a more general version of the Vertex Cover
problem, and we devise a logarithmic-factor approximation algorithm.

4.1 Better Approximation of the Traveling Salesman Prob-
lem

In the last lecture we discussed equivalent formulations of the Traveling Salesman problem,
and noted that Metric TSP-R can also be seen as the following problem: given a set of
points X and a symmetric distance function d : X × X → R≥0 that satisfies the triangle
inequality, find a multi-set of edges such that (X,E) is a connected multi-graph in which
every vertex has even degree and such that

∑
(u,v)∈E d(u, v) is minimized.

Our idea will be to construct E by starting from a minimum-cost spanning tree of X, and
then adding edges so that every vertex becomes of even degree.

But how do we choose which edges to add to T?

Definition 4.1 (Perfect Matching) Recall that graph (V,M) is a matching if no two
edges in M have an endpoint in common, that is, if all vertices have degree zero or one.
If (V,M) is a matching, we also call the edge set M a matching. A matching is a perfect
matching if every vertex has degree one

Note that a perfect matching can exist only if the number of vertices is even, in which case
|M | = |V |/2.

Definition 4.2 (Min Cost Perfect Matching) The Minimum Cost Perfect Matching
Problem is defined as follows: an input of the problem is a an even-size set of vertices
V and a non-negative symmetric weight function w : V × V → R≥0; the goal is to find a

21
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perfect matching (V,M) such that the cost

costw(M) :=
∑

(u,v)∈M

w(u, v)

of the matching is minimized.

We state, without proof, the following important result about perfect matchings.

Fact 4.3 There is a polynomial-time algorithm that solves the Minimum Cost Perfect
Matching Problem optimally.

We will need the following observation.

Fact 4.4 In every undirected graph, there is an even number of vertices having odd degree.

Proof: Let G = (V,E) be any graph. For every vertex v ∈ V , let deg(v) be the degree of
v, and let O be the set of vertices whose degree is odd. We begin by noting that the sum
of the degrees of all vertices is even, because it counts every edge twice:

∑
v∈V

deg(v) = 2 · |E|

The sum of the degrees of the vertices in V − O is also even, because it is a sum of even
numbers. So we have that the sum of the degrees of the vertices in O is even, because it is
a difference of two even numbers:

∑
v∈O

deg(v) = 2 · |E| −
∑

v∈V−O
deg(v) ≡ 0 (mod 2)

Now it follows from arithmetic modulo 2 that if we sum a collection of odd numbers and we
obtain an even result, then it must be because we added an even number of terms. (Because
the sum of an even number of odd terms is even.) So we have proved that |O| is even. �

We are now ready to describe our improved polynomial-time approximation algorithm for
General TSP-R.

• Input: instance (X, d) of Metric TSP-R

• Find a minimum cost spanning tree T = (X,E) of X relative to the weight function
d(·, ·)

• Let O be the set of points that have odd degree in T

• Find a minimum cost perfect matching (O,M) over the points in O relative to the
weight function d(·, ·)
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• Let E′ be the multiset of edges obtained by taking the edges of E and the edges of
M , with repetitions

• Find a Eulerian cycle C in the graph (X,E′)

• Output C

We first note that the algorithm is correct, because (X,E′) is a connected multigraph
(because it contains the connected graph T ) and it is such that all vertices have even degree,
so it is possible to find an Eulerian cycle, and the Eulerian cycle is a feasible solution to
General TSP-R.

The cost of the solution found by the algorithm is

∑
(u,v)∈E′

d(u, v) = costd(E) + costd(M)

We have already proved that, if T = (X,E) is an optimal spanning tree, then costd(E) ≤
optTSP−R(X, d).

Lemma 4.5 below shows that costd(M) ≤ 1
2optTSP−R(X, d), and so we have that the cost of

the solution found by the algorithm is ≤ 1.5 · optTSP−R(X, d), and so we have a polynomial
time 3

2 -approximate algorithm for Metric TSP-R. (And also General TSP-R and Metric
TSP-NR by the equivalence that we proved in the previous lecture.)

Lemma 4.5 Let X be a set of points, d(·, ·) be a symmetric distance function that satisfies
the triangle inequality, and O ⊆ X be an-even size subset of points. Let M∗ be a minimum
cost perfect matching for O with respect to the weight function d(·, ·). Then

costd(M∗) ≤
1
2
optTSP−R(X, d)

Proof: Let C be a cycle which is an optimal solution for the Metric TSP-R instance (X, d).
Consider the cycle C ′ which is obtained from C by skipping the elements of X−O, and also
the elements of O which are repeated more than once, so that exactly once occurrence of
every element of O is kept in C ′. For example, if X = {a, b, c, d, e}, O = {b, c, d, e} and C is
the cycle a→ c→ b→ d→ e→ a→ b→ a then we obtain C ′ by skipping the occurrences
of a and the second occurrence of b, and we have the cycle c → b → d → e → c. Because
of the triangle inequality, the operation of skipping a point (which means replacing the two
edges u→ v → w with the single edge u→ w) can only make the cycle shorter, and so

costd(C ′) ≤ costd(C) = optTSP−R(X, d)

Now, C ′ is a cycle with an even number of vertices and edges, so we can write C ′ =
v1 → v2 → · · · → v2k → v1, where v1, . . . , v2k is some ordering of the vertices and
k := |O|/2. We note that we can partition the set of edges in C ′ into two perfect match-
ings: the perfect matching {(v1, v2), (v3, v4), . . . , (v2k−1, v2k)} and the perfect matching
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{(v2, v3), (v4, v5), . . . , (v2k, v1)}. Since C ′ is made of the union of the edges of M1 and
M2, we have

costd(C ′) = costd(M1) + costd(M2)

The perfect matching M∗ is the minimum-cost perfect matching for O, and so costd(M1) ≥
costd(M∗) and costd(M2) ≥ costd(M∗), so we have

costd(C ′) ≥ 2costd(M∗)

and hence

optTSP−R(X, d) ≥ costd(C ′) ≥ 2 · costd(M∗)

�

An important point is that the algorithm that we just analyzed, like every other approxi-
mation algorithm, is always able to provide, together with a feasible solution, a certificate
that the optimum is greater than or equal to a certain lower bound. In the 2-approximate
algorithm TSP algorithm from the previous lecture, the certificate is a minimum spanning
tree, and we have that the TSP optimum is at least the cost of the minimum spanning
tree. In the improved algorithm of today, the cost of minimum spanning tree gives a lower
bound, and twice the cost of the minimum cost perfect matching over O gives another lower
bound, and we can take the largest of the two.

Let us work out an example of the algorithm on a concrete instance, and see what kind of
solution and what kind of lower bound we derive. Our set of points will be: Cupertino,
Mountain View, Palo Alto, Santa Clara, and Sunnyvale. We have the following distances
in miles, according to Google map:

C MV PA SC SV
C 0 7 12 7 4

MV 0 8 9 4
PA 0 14 10
SC 0 5
SV 0

The reader can verify that the triangle inequality is satisfied. If we run a minimum spanning
tree algorithm, we find the following tree of cost 21
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This tells us that the optimum is at least 21 miles.

If we employ the algorithm from the last lecture, we perform a DFS which gives us the cycle
Palo Alto → Mountain View → Sunnyvale → Cupertino → Sunnyvale → Santa Clara →
Sunnyvale → Mountain View → Palo Alto, which has a length of 42 miles. After skipping
the places that have already been visited, we get the cycle Palo Alto → Mountain View →
Sunnyvale → Cupertino → Santa Clara → Palo Alto, whose length is 37 miles.

Today’s algorithm, instead, looks for a minimum cost perfect matching of the points that
have odd degree in the spanning tree, that is all the places except Mountain View. A
minimum cost perfect matching (there are two optimal solutions) is {(PA, SV ), (C, SC)}
whose cost is 17 miles, 10 for the connection between Palo Alto and Sunnyvale, and 7 for
the one between Cupertino and Santa Clara.

This tells us that the TSP optimum must be at least 34, a stronger lower bound than the
one coming from the minimum spanning tree.

When we add the edges of the perfect matching to the edges of the spanning tree we get
the following graph, which is connected and is such that every vertex has even degree:
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We can find an Eulerian cycle in the graph, and we find the cycle Palo Alto → Mountain
View → Sunnyvale → Santa Clara → Cupertino → Sunnyvale → Palo Alto, whose length
is 38 miles. After skipping Sunnyvale the second time, we have the cycle Palo Alto →
Mountain View → Sunnyvale → Santa Clara → Cupertino → Palo Alto whose length is 36
miles.

In summary, yesterday’s algorithm finds a solution of 37 miles, and a certificate that the
optimum is at least 21. Today’s algorithm finds a solution of 36 miles, and a certificate that
the optimum is at least 34.

4.2 The Set Cover Problem

Definition 4.6 The Minimum Set Cover problem is defined as follows: an input of the
problem is a finite set X and a collection of subsets S1, . . . , Sm, where Si ⊆ X and

⋃m
i=1 Si =

X.

The goal of the problem is to find a smallest subcollection of sets whose union is X, that is
we want to find I ⊆ {1, . . . ,m} such that ∪i∈ISi = X and |I| is minimized.

For example, suppose that we want to assemble a team to work on a project, and each of
the person that we can choose to be on the team has a certain set of skills; we want to find
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the smallest group of people that, among themselves, have all the skills that we need. Say,
concretely, that we want to form a team of programmers and that we want to make sure
that, among the team members, there are programmers who can code in C, C++, Ruby,
Python, and Java. The available people are Andrea, who knows C and C++, Ben, who
knows C++ and Java, Lisa, who knows C++, Ruby and Python, and Mark who knows
C and Java. Selecting the smallest team is the same as a Minimum Set Cove problem in
which we have the instance

X = {C,C + +,Ruby,Python, Java}

S1 = {C,C + +}, S2 = {C + +, Java},

S3 = {C + +,Ruby,Python}, S4 = {C, Java}

In which the optimal solution is to pick S3, S4, that is Lisa and Mark.

Although this is an easy problem on very small instances, it is an NP-hard problem and
so it is unlikely to be solvable exactly in polynomial time. In fact, there are bad news also
about approximation.

Theorem 4.7 Suppose that, for some constant ε > 0, there is an algorithm that, on in-
put an instance of Set Cover finds a solution whose cost is at most (1 − ε) · ln |X| times
the optimum; then every problem in NP admits a randomized algorithm running in time
nO(log logn), where n is the size of the input.

If, for some constant c, there is a polynomial time c-approximate algorithm, then P = NP.

The possibility of nearly-polynomial time randomized algorithms is about as unlikely as P =
NP, so the best that we can hope for is an algorithm providing a ln |X| factor approximation.

A simple greedy approximation provides such an approximation.

Consider the following greedy approach to finding a set cover:

• Input: A set X and a collection of sets S1, . . . , Sm

• I := ∅

• while there is an uncovered element, that is an x ∈ X such that ∀i ∈ I.x 6∈ Si

– Let Si be a set with the largest number of uncovered elements

– I := I ∪ {i}

• return I

To work out an example, suppose that our input is

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
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S1 = {x1, x2, x7, x8}

S2 = {x1, x3, x4, x8, x10}

S3 = {x6, x3, x9, x10}

S4 = {x1, x5, x7, x8}

S5 = {x2, x3, x4, x8, x9}

The algorithm will pick four sets as follows:

• At the first step, all the elements of X are uncovered, and the algorithm picks S2,
which is the set that covers the most elements (five);

• At the second step, there are five remaining uncovered elements, and the best that we
can do is to cover two of them, for example picking S1;

• At the third step there remain three uncovered elements, and again the best we can
do is to cover two of them, by picking S3;

• At the fourth step only x5 remains uncovered, and we can cover it by picking S4.

As with the other algorithms that we have analyzed, it is important to find ways to prove
lower bounds to the optimum. Here we can make the following easy observations: at the
beginning, we have 10 items to cover, and no set can cover more than 5 of them, so it is
clear that we need at least two sets. At the second step, we see that there are five uncovered
items, and that there is no set in our input that contains more than two of those uncovered
items; this means that even the optimum solution must use at least 5/2 sets to cover those
five items, and so at least 5/2 sets, that is at least 3 sets, to cover all the items.

In general, if we see that at some point there are k items left to cover, and that every set
in our input contains at most t of those items, it follows that the optimum contains at least
k/t sets. These simple observations are already sufficient to prove that the algorithm is
(ln |X|+O(1))-approximate.

We reason as follows. Let X,S1, . . . , Sm be the input to the algorithm, and let x1, . . . , xn be
an ordering of the elements of X in the order in which they are covered by the algorithm.
Let ci be the number of elements that become covered at the same time step in which xi is
covered. Let opt be the number of sets used by an optimal solution and apx be the number
of sets used by the algorithm.

For every i, define

cost(xi) :=
1
ci

The intuition for this definition is that, at the step in which we covered xi, we had to “pay”
for one set in order to cover ci elements that were previously uncovered. Thus, we can think
of each element that we covered at that step as having cost us 1

ci
times the cost of a set. In

particular, we have that the total number of sets used by the algorithm is the sum of the
costs:
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apx =
n∑
i=1

cost(xi)

Now, consider the items xi, . . . , xn and let us reason about how the optimum solution
manages to cover them. Every set in our input covers at most ci of those n − i + 1 items,
and it is possible, using the optimal solution, to cover all the items, including the items
xi, . . . , xn with opt sets. So it must be the case that

opt ≥ n− i+ 1
ci

= (n− i+ 1) · cost(xi)

from which we get

apx ≤ opt ·

(
n∑
i=1

1
n− i+ 1

)

The quantity

n∑
i=1

1
n− i+ 1

=
n∑
i=1

1
i

is known to be at most lnn+O(1), and so we have

apx ≤ (lnn+O(1)) · opt

It is easy to prove the weaker bound
∑n

i=1
1
n ≤ dlog2 n+1e, which suffices to prove that our

algorithm is O(log n)-approximate: just divide the sum into terms of the form
∑2k+1−1

i=2k
1
i ,

that is

1 +
(

1
2

+
1
3

)
+
(

1
4

+
1
5

+
1
6

+
1
7

)
+ · · ·

and notice that each term is at most 1 (because each term is itself the sum of 2k terms,
each ≤ 2−k) and that the whole sum contains at most dlog2 n+ 1e such terms.

4.3 Set Cover versus Vertex Cover

The Vertex Cover problem can be seen as the special case of Set Cover in which every item
in X appears in precisely two sets.

If G = (V,E) is an instance of Vertex Cover, construct the instance of Set Cover in which
X = E, and in which we have one set Sv for every vertex v, defined so that Sv is the set of
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all edges that have v as an endpoint. Then finding a subcollection of sets that covers all of
X is precisely the same problem as finding a subset of vertices that cover all the edges.

The greedy algorithm for Set Cover that we have discussed, when applied to the instances
obtained from Vertex Cover via the above transformation, is precisely the greedy algorithm
for Vertex Cover: the algorithm starts from an empty set of vertices, and then, while there
are uncovered edges, adds the vertex incident to the largest number of uncovered edges. By
the above analysis, the greedy algorithm for Vertex Cover finds a solution that is no worse
than (lnn+O(1)) times the optimum, a fact that we mentioned without proof a couple of
lectures ago.



Lecture 5

Linear Programming

In which we introduce linear programming.

5.1 Introduction to Linear Programming

A linear program is an optimization problem in which we have a collection of variables,
which can take real values, and we want to find an assignment of values to the variables
that satisfies a given collection of linear inequalities and that maximizes or minimizes a
given linear function.

(The term programming in linear programming, is not used as in computer programming,
but as in, e.g., tv programming, to mean planning.)

For example, the following is a linear program.

maximize x1 + x2

subject to
x1 + 2x2 ≤ 1
2x1 + x2 ≤ 1
x1 ≥ 0
x2 ≥ 0

(5.1)

The linear function that we want to optimize (x1 + x2 in the above example) is called
the objective function. A feasible solution is an assignment of values to the variables that
satisfies the inequalities. The value that the objective function gives to an assignment is
called the cost of the assignment. For example, x1 := 1

3 and x2 := 1
3 is a feasible solution,

of cost 2
3 . Note that if x1, x2 are values that satisfy the inequalities, then, by summing the

first two inequalities, we see that

3x1 + 3x2 ≤ 2

31
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that is,

x1 + x2 ≤
2
3

and so no feasible solution has cost higher than 2
3 , so the solution x1 := 1

3 , x2 := 1
3 is

optimal. As we will see in the next lecture, this trick of summing inequalities to verify the
optimality of a solution is part of the very general theory of duality of linear programming.

Linear programming is a rather different optimization problem from the ones we have stud-
ied so far. Optimization problems such as Vertex Cover, Set Cover, Steiner Tree and TSP
are such that, for a given input, there is only a finite number of possible solutions, so it
is always trivial to solve the problem in finite time. The number of solutions, however,
is typically exponentially big in the size of the input and so, in order to be able to solve
the problem on reasonably large inputs, we look for polynomial-time algorithms. In linear
programming, however, each variable can take an infinite number of possible values, so it
is not even clear that the problem is solvable in finite time.

As we will see, it is indeed possible to solve linear programming problems in finite time,
and there are in fact, polynomial time algorithms and efficient algorithms that solve linear
programs optimally.

There are at least two reasons why we are going to study linear programming in a course
devoted to combinatorial optimization:

• Efficient linear programming solvers are often used as part of the toolkit to design
exact or approximate algorithms for combinatorial problems.

• The powerful theory of duality of linear programming, that we will describe in the next
lecture, is a very useful mathematical theory to reason about algorithms, including
purely combinatorial algorithms for combinatorial problems that seemingly have no
connection with continuous optimization.

5.2 A Geometric Interpretation

5.2.1 A 2-Dimensional Example

Consider again the linear program (5.1). Since it has two variables, we can think of any
possible assignment of values to the variables as a point (x1, x2) in the plane. With this
interpretation, every inequality, for example x1 + 2x2 ≤ 1, divides the plane into two
regions: the set of points (x1, x2) such that x1 + 2x2 > 1, which are definitely not feasible
solutions, and the points such that x1+2x2 ≤ 1, which satisfy the inequality and which could
be feasible provided that they also satisfy the other inequalities. The line with equation
x1 + 2x2 = 1 is the boundary between the two regions.

The set of feasible solutions to (5.1) is the set of points which satisfy all four inequalities,
shown in blue below:
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The feasible region is a polygon with four edges, one for each inequality. This is not entirely
a coincidence: for each inequality, for example x1 + 2x2 ≤ 1, we can look at the line which
is the boundary between the region of points that satisfy the inequality and the region
of points that do not, that is, the line x1 + 2x1 = 1 in this example. The points on the
line that satisfy the other constraints form a segment (in the example, the segment of the
line x1 + 2x2 = 1 such that 0 ≤ x1 ≤ 1/3), and that segment is one of the edges of the
polygon of feasible solutions. Although it does not happen in our example, it could also
be that if we take one of the inequalities, consider the line which is the boundary of the
set of points that satisfy the inequality, and look at which points on the line are feasible
for the linear program, we end up with the empty set (for example, suppose that in the
above example we also had the inequality x1 + x2 ≥ −1); in this case the inequality does
not give rise to an edge of the polygon of feasible solutions. Another possibility is that the
line intersects the feasible region only at one point (for example suppose we also had the
inequality x1 + x2 ≥ 0). Yet another possibility is that our polygon is unbounded, in which
case one of its edges is not a segment but a half-line (for example, suppose we did not have
the inequality x1 ≥ 0, then the half-line of points such that x2 = 0 and x1 ≤ 1 would have
been an edge).

To look for the best feasible solution, we can start from an arbitrary point, for example the
vertex (0, 0). We can then divide the plane into two regions: the set of points whose cost
is greater than or equal to the cost of (0, 0), that is the set of points such that x1 + x2 ≥ 0,
and the set of points of cost lower than the cost of (0, 0), that is, the set of points such that
x1 + x2 < 0. Clearly we only need to continue our search in the first region, although we
see that actually the entire set of feasible points is in the first region, so the point (0, 0) is
actually the worst solution.

So we continue our search by trying another vertex, for example (1/2, 0). Again we can
divide the plane into the set of points of cost greater than or equal to the cost of (1/2, 0),
that is the points such that x1 + x2 ≥ 1/2, and the set of points of cost lower than the cost
of (1, 0). We again want to restrict ourselves to the first region, and we see that we have
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now narrowed down our search quite a bit: the feasible points in the first region are shown
in red:

So we try another vertex in the red region, for example
(

1
3 ,

1
3

)
, which has cost 2

3 . If we
consider the region of points of cost greater than or equal to the cost of the point (1/3, 1/3),
that is, the region x1 + x2 ≥ 2/3, we see that the point (1/3, 1/3) is the only feasible point
in the region, and so there is no other feasible point of higher cost, and we have found our
optimal solution.

5.2.2 A 3-Dimensional Example

Consider now a linear program with three variables, for example

maximize x1 + 2x2 − x3

subject to
x1 + x2 ≤ 1
x2 + x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

(5.2)

In this case we can think of every assignment to the variables as a point (x1, x2, x3) in
three-dimensional space. Each constraint divides the space into two regions as before; for
example the constraint x1 + x2 ≤ 1 divides the space into the region of points (x1, x2, x3)
such that x1 + x2 ≤ 1, which satisfy the equation, and points such that x1 + x2 > 1, which
do not. The boundary between the regions is the plane of points such that x1 + x2 = 1.
The region of points that satisfy an inequality is called a half-space.

The set of feasible points is a polyhedron (plural: polyhedra). A polyhedron is bounded by
faces, which are themselves polygons. For example, a cube has six faces, and each face is
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a square. In general, if we take an inequality, for example x3 ≥ 0, and consider the plane
x3 = 0 which is the boundary of the half-space of points that satisfy the inequality, and we
consider the set of feasible points in that plane, the resulting polygon (if it’s not the empty
set) is one of the faces of our polyhedron. For example, the set of feasible points in the place
x3 = 0 is the triangle given by the inequalities x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1, with vertices
(0, 0, 0), (0, 1, 0) and (1, 0, 0). So we see that a 2-dimensional face is obtained by taking
our inequalities and changing one of them to equality, provided that the resulting feasible
region is two-dimensional; a 1-dimensional edge is obtained by changing two inequalities to
equality, again provided that the resulting constraints define a 1-dimensional region; and
a vertex is obtained by changing three inequalities to equality, provided that the resulting
point is feasible for the other inequalities.

As before, we can start from a feasible point, for example the vertex (0, 0, 0), of cost zero,
obtained by changing the last three inequalities to equality. We need to check if there are
feasible points, other than (0, 0, 0), such that x1 + 2x2 − x3 ≥ 0. That is, we are interested
in the set of points such that

x1 + x2 ≤ 1
x2 + x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0
x1 + 2x2 − x3 ≥ 0

which is again a polyhedron, of which (0, 0, 0) is a vertex. To find another vertex, if any,
we try to start from the three inequalities that we changed to equality to find (0, 0, 0), and
remove one to see if we get an edge of non-zero length or just the point (0, 0, 0) again.

For example, if we keep x1 = 0, x2 = 0, we see that only feasible value of x3 is zero, so there
is no edge; if we keep x1 = 0, x3 = 0, we have that the region 0 ≤ x2 ≤ 1 is feasible, and
so it is an edge of the above polyhedron. The other vertex of that edge is (0, 1, 0), which is
the next solution that we shall consider. It is a solution of cost 2, so, in order to look for a
better solution, we want to consider the polyhedron

x1 + x2 ≤ 1
x2 + x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0
x1 + 2x2 − x3 ≥ 2

In order to see if this polyhedron has any edge of non-zero length, we again keep only two
of the three equations that defined our vertex (0, 1, 0), that is only two of the equations
x1 = 0, x3 = 0, x1 + x2 = 1. If we keep the first two, (0, 1, 0) is the only feasible point. If
we keep x3 = 0 and x1 + x2 = 1, then (0, 1, 0) is again the only feasible point. If we keep
x1 = 0 and x + 1 + x2 = 1, that is x1 = 0 and x2 = 1, we see again that the only feasible
point is (0, 1, 0). These are the only three edges that could have had (0, 1, 0) as an endpoint,
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and since (0, 1, 0) is a vertex of the above polytope, we have to conclude that the polytope
has no edge, and so it is made of the single point (0, 1, 0).

This means that (0, 1, 0) is the optimal solution of (5.2)

5.2.3 The General Case

In general, if we have a linear program with n variables x1, . . . , xn, we can think of every
assignment to the variables as an n-dimensional point (x1, . . . , xn) in Rn.

Every inequality a1x1 + . . . anxn ≤ b divides the space Rn into the region that satisfies
the inequality and the region that does not satisfy the inequality, with the hyperplane
a1x1 + · · · anxn = b being the boundary between the two regions. The two regions are called
half-spaces.

The set of feasible points is an intersection of half-spaces and is called a polytope.

Generalizing the approach that we have used in the previous two examples, the following
is the outline of an algorithm to find an optimal solution to a given maximization linear
program:

1. Start from a vertex (a1, . . . , an) in the feasible region, by changing n of the inequalities
to equality in such a way that: (i) the resulting n equations are linearly independent,
and (ii) the unique solution is feasible for the remaining inequalities;

• If there is no such vertex, output “linear program is infeasible.”

2. Consider the n possible edges of the polytope of feasible solutions that have (a1, . . . , an)
as an endpoint. That is, for each of the n equations that identified (a1, . . . , an), set
back that equation to an inequality, and consider the set of solutions that are feasible
for the other n− 1 equations and for the inequalities (this set of points can be a line,
a half-line, a segment, or just the point (a1, . . . , an)).

• If there is an edge that contains points of arbitrarily large cost, then output
“optimum is unbounded”

• Else, if there are edges that contain points of cost larger than (a1, . . . , an), then
let (b1, . . . , bn) be the second endpoint of one of such edges

– (a1, . . . , an) := (b1, . . . , bn);
– go to 2

• Else, output “(a1, . . . , an) is an optimal solution”

This is the outline of an algorithm called the Simplex algorithm. It is not a complete
description because:

• We haven’t discussed how to find the initial vertex. This is done by constructing a
new polytope such that finding an optimal solution in the new polytope either gives
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us a feasible vertex for the original linear program, or a “certificate” that the original
problem is infeasible. We then apply the Simplex algorithm to the new polytope. Now,
this looks like the beginning of an infinite loop, but the new polytope is constructed
in such a way that it is easy to find an initial feasible vertex.

• We haven’t discussed certain special cases; for example it is possible for a polytope to
not have any vertex, for example if the number of inequalities is less than the number
of variables. (In such a case we can either add inequalities or eliminate variables in
a way that do not change the optimum but that creates vertices.) Also there can
be cases in which a vertex of a polytope in Rn is the endpoint of more than n edges
(consider a pyramid with a square base in R3: the top vertex has is an endpoint of
four edges), while the algorithm, as described above, considers at most n edges for
every vertex.

The simplex algorithm shows that a linear program can always be solved in finite time, and
in fact in time that is at most exponential in the number of variables. This is because each
iteration takes polynomial time and moves to a new vertex, and if there are m inequalities
and n variables there can be at most

(
m
n

)
≤ mn vertices.

Unfortunately, for all the known variants of the simplex method (which differ in the way
they choose the vertex to move to, when there is more than one possible choice) there are
examples of linear programs on which the algorithm takes exponential time. In practice,
however, the simplex algorithm is usually very fast, even on linear programs with tens or
hundreds of thousands of variables and constraints.

5.2.4 Polynomial Time Algorithms for LInear Programming

Two (families of) polynomial time algorithms for linear programming are known.

One, called the ellipsoid algorithm, starts by finding an ellipsoid (the high-dimensional
analog of an ellipse, a “squashed disk”) that contains the optimal solution, and then, at
every step, it constructs another ellipsoid whose volume is a smaller than the previous one,
while still being guaranteed to contain the optimal solution. After several iterations, the
algorithm identifies a tiny region that contains the optimal solution. It is known that if
a linear program has a finite optimum, the values of the xi in the optimal solution are
rational numbers in which both the denominator and numerator have a polynomial number
of digits in the size of the input (assuming all coefficients in the objective function and in
the inequalities are also rational numbers and that we count the number of digits in their
fractional representation when we compute the size of the input), and so if the final ellipsoid
is small enough there is only one point with such rational coordinates in the ellipsoid.

The other algorithm, which is actually a family of algorithms, uses the interior point method,
in which the algorithm computes a sequence of points in the interior of the polytope (in
contrast to the simplex algorithm, which finds a sequence of vertices on the exterior of the
polytope), where each point is obtained from the previous one by optimizing a properly
chosen function that favors points of higher cost for the objective function, and disfavors
points that are too close to the boundary of the polytope. Eventually, the algorithm finds
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a point that is arbitrary close to the optimal vertex, and the actual optimal vertex can
be found, like in the ellipsoid method, once it is the unique point with bounded rational
coordinates that is close to the current point.

5.2.5 Summary

Here are the important points to remember about what we discussed so far:

• In a linear program we are given a set of variables x1, . . . , xn and we want to find an
assignment to the variables that satisfies a given set of linear equalities, and that max-
imizes or minimizes a given linear objective function of the variables. An assignment
that satisfies the inequalities is called a feasible solution;

• If we think of every possible assignment to the variables as a point in Rn, then the
set of feasible solutions forms a polytope;

• It is possible that there is no feasible solution to the given inequalities, in which case
we call the linear program infeasible.

• If the linear program is feasible, it is possible that it is of maximization type and there
are solutions of arbitrarily large cost, or that it is of minimization type and there are
solutions of arbitrarily small cost. In this case we say that the linear program is
unbounded. Sometimes we will say that the optimum of an unbounded maximization
linear program is +∞, and that the optimum of an unbounded minimization linear
program is −∞, even though this is not entirely correct because there is no feasible
solution of cost +∞ or −∞, but rather a sequence of solutions such the limit of their
cost is +∞ or −∞.

• If the linear program is feasible and not unbounded then it has a finite optimum, and
we are interested in finding a feasible solution of optimum cost.

• The simplex algorithm, the ellipsoid algorithm, and the interior point algorithms are
able, given a linear program, to determine if it is feasible or not, if feasible they can
determine if it is bounded or unbounded, and if feasible and bounded they can find a
solution of optimum cost. All three run in finite time; in the worst case, the simplex
algorithm runs in exponential time, while the other algorithms run in time polynomial
in the size of the input.

• When we refer to the “size of the input” we assume that all coefficients are rational
numbers, and the size of the input is the total number of bits necessary to represent the
coefficients of the objective function and of the inequalities as ratios of integers. For
example, the rational number a/b requires log2 a+log2 b+O(1) bits to be represented,
if a and b have no common factor.
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5.3 Standard Form for Linear Programs

We say that a maximization linear program with n variables is in standard form if for every
variable xi we have the inequality xi ≥ 0 and all other m inequalities are of ≤ type. A
linear program in standard form can be written as

maximize cTx
subject to

Ax ≤ b
x ≥ 0

(5.3)

Let us unpack the above notation.

The vector c =

 c1
...
cn

 ∈ Rn is the column vector of coefficients of the objective function,

x =

 x1
...
xn

 is the column vector of variables, cT = (c1, . . . , cn) is the transpose of c, a row

vector, and cTx is the matrix product of the 1 × n “matrix” cT times the n × 1 “matrix”
x, which is the value

c1x1 + · · · cnxn

that is, the objective function.

The matrix A is the n ×m matrix of coefficients of the left-hand sides of the inequalities,
and b is the m-dimensional vector of right-hand sides of the inequalities. When we write

a ≤ b, for two vectors a =

 a1
...
am

 and b =

 b1
...
bm

 we mean the m inequalities a1 ≤ b1,

. . ., am ≤ bm, so the inequality Ax ≤ b means the collection of inequalities

a1,1x1 + · · ·+ a1,nxn ≤ b1

· · ·

am,1x1 + · · ·+ am,nxn ≤ bm

Putting a linear program in standard form is a useful first step for linear programming
algorithms, and it is also useful to develop the theory of duality as we will do in the next
lecture.

It is easy to see that given an arbitrary linear program we can find an equivalent linear
program in standard form.
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• If we have a linear program in which a variable x is not required to be ≥ 0, we can
introduce two new variables x′ and x′′, apply the substitution x ← x′ − x′′ in every
inequality in which x appears, and add the inequalities x′ ≥ 0, x′′ ≥ 0. Any feasible
solution for the new linear program is feasible for the original one, after assigning
x := x′ − x′′, with the same cost; also, any solution that was feasible for the original
program can be converted into a solution for the new linear program, with the same
cost, by assigning x′ := x, x′′ := 0 if x > 0 and x′ := 0, x′′ = −x if x ≤ 0.

• If we have an inequality of ≥ type, other than the inequalities xi ≥ 0, we can change
sign to the left-hand side and the right-hand side, and change the direction of the
inequality.

• Some definitions of linear programming allow equations as constraints. If we have an
equation aTx = b, we rewrite it as the two inequalities aTx ≤ b and −aTx ≤ −b.

The standard form for a minimization problem is

minimize cTx
subject to

Ax ≥ b
x ≥ 0

(5.4)

As we did for maximization problems, every minimization problem can be put into normal
form by changing the sign of inequalities and doing the substitution x→ x′ − x′′ for every
variable x that does not have a non-negativity constraint x ≥ 0.



Lecture 6

Linear Programming Duality

In which we introduce the theory of duality in linear programming.

6.1 The Dual of a Linear Program

Suppose that we have the following linear program in maximization standard form:

maximize x1 + 2x2 + x3 + x4

subject to
x1 + 2x2 + x3 ≤ 2
x2 + x4 ≤ 1
x1 + 2x3 ≤ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

(6.1)

and that an LP-solver has found for us the solution x1 := 1, x2 := 1
2 , x3 := 0, x4 := 1

2
of cost 2.5. How can we convince ourselves, or another user, that the solution is indeed
optimal, without having to trace the steps of the computation of the algorithm?

Observe that if we have two valid inequalities

a ≤ b and c ≤ d

then we can deduce that the inequality

a+ c ≤ b+ d

(derived by “summing the left hand sides and the right hand sides” of our original inequal-
ities) is also true. In fact, we can also scale the inequalities by a positive multiplicative
factor before adding them up, so for every non-negative values y1, y2 ≥ 0 we also have

41
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y1a+ y2c ≤ y1b+ y2d

Going back to our linear program (6.1), we see that if we scale the first inequality by 1
2 ,

add the second inequality, and then add the third inequality scaled by 1
2 , we get that, for

every (x1, x2, x3, x4) that is feasible for (6.1),

x1 + 2x2 + 1.5x3 + x4 ≤ 2.5

And so, for every feasible (x1, x2, x3, x4), its cost is

x1 + 2x2 + x3 + x4 ≤ x1 + 2x2 + 1.5x3 + x4 ≤ 2.5

meaning that a solution of cost 2.5 is indeed optimal.

In general, how do we find a good choice of scaling factors for the inequalities, and what
kind of upper bounds can we prove to the optimum?

Suppose that we have a maximization linear program in standard form.

maximize c1x1 + . . . cnxn
subject to

a1,1x1 + . . .+ a1,nxn ≤ b1
...
am,1x1 + . . .+ am,nxn ≤ bm
x1 ≥ 0
...
xn ≥ 0

(6.2)

For every choice of non-negative scaling factors y1, . . . , ym, we can derive the inequality

y1 · (a1,1x1 + . . .+ a1,nxn)

+ · · ·

+yn · (am,1x1 + . . .+ am,nxn)

≤ y1b1 + · · · ymbm

which is true for every feasible solution (x1, . . . , xn) to the linear program (6.2). We can
rewrite the inequality as

(a1,1y1 + · · · am,1ym) · x1

+ · · ·

+(a1,ny1 · · · am,nym) · xn
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≤ y1b1 + · · · ymbm

So we get that a certain linear function of the xi is always at most a certain value, for every
feasible (x1, . . . , xn). The trick is now to choose the yi so that the linear function of the
xi for which we get an upper bound is, in turn, an upper bound to the cost function of
(x1, . . . , xn). We can achieve this if we choose the yi such that

c1 ≤ a1,1y1 + · · · am,1ym
...
cn ≤ a1,ny1 · · · am,nym

(6.3)

Now we see that for every non-negative (y1, . . . , ym) that satisfies (6.3), and for every
(x1, . . . , xn) that is feasible for (6.2),

c1x1 + . . . cnxn

≤ (a1,1y1 + · · · am,1ym) · x1

+ · · ·

+(a1,ny1 · · · am,nym) · xn

≤ y1b1 + · · · ymbm

Clearly, we want to find the non-negative values y1, . . . , ym such that the above upper bound
is as strong as possible, that is we want to

minimize b1y1 + · · · bmym
subject to

a1,1y1 + . . .+ am,1ym ≥ c1
...
an,1y1 + . . .+ am,nym ≥ cn
y1 ≥ 0
...
ym ≥ 0

(6.4)

So we find out that if we want to find the scaling factors that give us the best possible
upper bound to the optimum of a linear program in standard maximization form, we end
up with a new linear program, in standard minimization form.

Definition 6.1 If
maximize cTx
subject to

Ax ≤ b
x ≥ 0

(6.5)
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is a linear program in maximization standard form, then its dual is the minimization linear
program

minimize bTy
subject to

ATy ≥ c
y ≥ 0

(6.6)

So if we have a linear program in maximization linear form, which we are going to call the
primal linear program, its dual is formed by having one variable for each constraint of the
primal (not counting the non-negativity constraints of the primal variables), and having
one constraint for each variable of the primal (plus the non-negative constraints of the dual
variables); we change maximization to minimization, we switch the roles of the coefficients
of the objective function and of the right-hand sides of the inequalities, and we take the
transpose of the matrix of coefficients of the left-hand side of the inequalities.

The optimum of the dual is now an upper bound to the optimum of the primal.

How do we do the same thing but starting from a minimization linear program?

We can rewrite

minimize cTy
subject to

Ay ≥ b
y ≥ 0

in an equivalent way as

maximize − cTy
subject to

−Ay ≤ −b
y ≥ 0

If we compute the dual of the above program we get

minimize − bT z
subject to

−AT z ≥ −c
z ≥ 0

that is,

maximize bT z
subject to

AT z ≤ c
y ≥ 0
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So we can form the dual of a linear program in minimization normal form in the same way
in which we formed the dual in the maximization case:

• switch the type of optimization,

• introduce as many dual variables as the number of primal constraints (not counting
the non-negativity constraints),

• define as many dual constraints (not counting the non-negativity constraints) as the
number of primal variables.

• take the transpose of the matrix of coefficients of the left-hand side of the inequality,

• switch the roles of the vector of coefficients in the objective function and the vector
of right-hand sides in the inequalities.

Note that:

Fact 6.2 The dual of the dual of a linear program is the linear program itself.

We have already proved the following:

Fact 6.3 If the primal (in maximization standard form) and the dual (in minimization
standard form) are both feasible, then

opt(primal) ≤ opt(dual)

Which we can generalize a little

Theorem 6.4 (Weak Duality Theorem) If LP1 is a linear program in maximization
standard form, LP2 is a linear program in minimization standard form, and LP1 and LP2

are duals of each other then:

• If LP1 is unbounded, then LP2 is infeasible;

• If LP2 is unbounded, then LP1 is infeasible;

• If LP1 and LP2 are both feasible and bounded, then

opt(LP1) ≤ opt(LP2)

Proof: We have proved the third statement already. Now observe that the third statement
is also saying that if LP1 and LP2 are both feasible, then they have to both be bounded,
because every feasible solution to LP2 gives a finite upper bound to the optimum of LP1

(which then cannot be +∞) and every feasible solution to LP1 gives a finite lower bound
to the optimum of LP2 (which then cannot be −∞). �

What is surprising is that, for bounded and feasible linear programs, there is always a dual
solution that certifies the exact value of the optimum.
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Theorem 6.5 (Strong Duality) If either LP1 or LP2 is feasible and bounded, then so is
the other, and

opt(LP1) = opt(LP2)

To summarize, the following cases can arise:

• If one of LP1 or LP2 is feasible and bounded, then so is the other;

• If one of LP1 or LP2 is unbounded, then the other is infeasible;

• If one of LP1 or LP2 is infeasible, then the other cannot be feasible and bounded, that
is, the other is going to be either infeasible or unbounded. Either case can happen.



Lecture 7

Rounding Linear Programs

In which we show how to use linear programming to approximate the vertex cover problem.

7.1 Linear Programming Relaxations

An integer linear program (abbreviated ILP) is a linear program (abbreviated LP) with
the additional constraints that the variables must take integer values. For example, the
following is an ILP:

maximize x1 − x2 + 2x3

subject to
x1 − x2 ≤ 1
x2 + x3 ≤ 2
x1 ∈ N
x2 ∈ N
x3 ∈ N

(7.1)

Where N = {0, 1, 2, . . .} is the set of natural numbers.

The advantage of ILPs is that they are a very expressive language to formulate optimization
problems, and they can capture in a natural and direct way a large number of combinatorial
optimization problems. The disadvantage of ILPs is that they are a very expressive language
to formulate combinatorial optimization problems, and finding optimal solutions for ILPs
is NP-hard.

If we are interested in designing a polynomial time algorithm (exact or approximate) for a
combinatorial optimization problem, formulating the combinatorial optimization problem
as an ILP is useful as a first step in the following methodology (the discussion assumes that
we are working with a minimization problem):

• Formulate the combinatorial optimization problem as an ILP;

47
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• Derive a LP from the ILP by removing the constraint that the variables have to take
integer value. The resulting LP is called a “relaxation” of the original problem. Note
that in the LP we are minimizing the same objective function over a larger set of
solutions, so opt(LP ) ≤ opt(ILP );

• Solve the LP optimally using an efficient algorithm for linear programming;

– If the optimal LP solution has integer values, then it is a solution for the ILP of
cost opt(LP ) ≤ opt(ILP ), and so we have found an optimal solution for the ILP
and hence an optimal solution for our combinatorial optimization problem;

– If the optimal LP solution x∗ has fractional values, but we have a rounding
procedure that transforms x∗ into an integral solution x′ such that cost(x′) ≤
c · cost(x∗) for some constant c, then we are able to find a solution to the ILP of
cost ≤ c · opt(LP ) ≤ c · opt(ILP ), and so we have a c-approximate algorithm for
our combinatorial optimization problem.

In this lecture and in the next one we will see how to round fractional solutions of relaxations
of the Vertex Cover and the Set Cover problem, and so we will be able to derive new
approximation algorithms for Vertex Cover and Set Cover based on linear programming.

7.2 The Weighted Vertex Cover Problem

Recall that in the vertex cover problem we are given an undirected graph G = (V,E) and
we want to find a minimum-size set of vertices S that “touches” all the edges of the graph,
that is, such that for every (u, v) ∈ E at least one of u or v belongs to S.

We described the following 2-approximate algorithm:

• Input: G = (V,E)

• S := ∅

• For each (u, v) ∈ E

– if u 6∈ S ∧ v 6∈ S then S := S ∪ {u, v}

• return S

The algorithm finds a vertex cover by construction, and if the condition in the if step is
satisfied k times, then |S| = 2k and the graph contains a matching of size k, meaning that
the vertex cover optimum is at least k and so |S| is at most twice the optimum.

Consider now the weighted vertex cover problem. In this variation of the problem, the
graph G = (V,E) comes with costs on the vertices, that is, for every vertex v we have a
non-negative cost c(v), and now we are not looking any more for the vertex cover with the
fewest vertices, but for the vertex cover S of minimum total cost

∑
v∈S c(v). (The original

problem corresponds to the case in which every vertex has cost 1.)
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Our simple algorithm can perform very badly on weighted instances. For example consider
the following graph:

Then the algorithm would start from the edge (a, b), and cover it by putting a, b into S.
This would suffice to cover all edges, but would have cost 101, which is much worse than
the optimal solution which consists in picking the vertices {b, c, d, e, f}, with a cost of 5.

Why does the approximation analysis fail in the weighted case? In the unweighted case,
every edge which is considered by the algorithm must cost at least 1 to the optimum solution
to cover (because those edges form a matching), and our algorithm invests a cost of 2 to
cover that edge, so we get a factor of 2 approximation. In the weighted case, an edge in
which one endpoint has cost 1 and one endpoint has cost 100 tells us that the optimum
solution must spend at least 1 to cover that edge, but if we want to have both endpoints in
the vertex cover we are going to spend 101 and, in general, we cannot hope for any bounded
approximation guarantee.

We might think of a heuristic in which we modify our algorithm so that, when it considers
an uncovered edge in which one endpoint is much more expensive than the other, we only
put the cheaper endpoint in S. This heuristic, unfortunately, also fails completely: imagine
a “star” graph like the one above, in which there is a central vertex of cost 100, which is
connected to 10,000 other vertices, each of cost 1. Then the algorithm would consider all
the 10,000 edges, and decide to cover each of them using the cheaper endpoint, finding a
solution of cost 10,000 instead of the optimal solution of picking the center vertex, which
has cost 100.

Indeed, it is rather tricky to approximate the weighted vertex cover problem via a combi-
natorial algorithm, although we will develop (helped by linear programming intuition) such
an approximation algorithm by the end of the lecture.

Developing a 2-approximate algorithm for weighted vertex cover via a linear programming
relaxation, however, is amazingly simple.
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7.3 A Linear Programming Relaxation of Vertex Cover

Let us apply the methodology described in the first section. Given a graph G = (V,E) and
vertex costs c(·), we can formulate the minimum vertex cover problem for G as an ILP by
using a variable xv for each vertex v, taking the values 0 or 1, with the interpretation that
xv = 0 means that v 6∈ S, and xv = 1 means that v ∈ S. The cost of the solution, which
we want to minimize, is

∑
v∈V xvc(v), and we want xu + xv ≥ 1 for each edge (u, v). This

gives the ILP

minimize
∑

v∈V c(v)xv
subject to

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ≤ 1 ∀v ∈ V
xv ∈ N ∀v ∈ V

(7.2)

Next, we relax the ILP (7.2) to a linear program.

minimize
∑

v∈V c(v)xv
subject to

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ≤ 1 ∀v ∈ V
xv ≥ 0 ∀v ∈ V

(7.3)

Let us solve the linear program in polynomial time, and suppose that x∗ is an optimal
solution to the LP (7.3); how do we “round” it to a 0/1 solution, that is, to a vertex cover?
Let’s do it in the simplest possible way: round each value to the closest integer, that is,
define x′v = 1 if x∗v ≥ 1

2 , and x′v = 0 if x∗v <
1
2 . Now, find the set corresponding to the

integral solution x′, that is S := {v : x′v = 1} and output it. We have:

• The set S is a valid vertex cover, because for each edge (u, v) it is true that x∗u+x∗v ≥ 1,
and so at least one of x∗u or x∗v must be at least 1/2, and so at least one of u or v
belongs to S;

• The cost of S is at most twice the optimum, because the cost of S is

∑
v∈S

c(v)

=
∑
v∈V

c(v)x′v

≤
∑
v∈V

c(v) · 2 · x∗v

= 2 · opt(LP )

≤ 2 · opt(V C)
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And that’s all there is to it! We now have a polynomial-time 2-approximate algorithm for
weighted vertex cover.

7.4 The Dual of the LP Relaxation

The vertex cover approximation algorithm based on linear programming is very elegant
and simple, but it requires the solution of a linear program. Our previous vertex cover
approximation algorithm, instead, had a very fast linear-time implementation. Can we get
a fast linear-time algorithm that works in the weighted case and achieves a factor of 2
approximation? We will see how to do it, and although the algorithm will be completely
combinatorial, its analysis will use the LP relaxation of vertex cover.

How should we get started in thinking about a combinatorial approximation algorithm for
weighted vertex cover?

We have made the following point a few times already, but it is good to stress it again: in
order to have any hope to design a provably good approximation algorithm for a minimiza-
tion problem, we need to have a good technique to prove lower bounds for the optimum.
Otherwise, we will not be able to prove that the optimum is at least a constant fraction of
the cost of the solution found by our algorithms.

In the unweighted vertex cover problem, we say that if a graph has a matching of size
k, then the optimum vertex cover must contain at least k vertices, and that’s our lower
bound technique. We have already seen examples in which reasoning about matchings is
not effective in proving lower bound to the optimum of weighted instances of vertex cover.

How else can we prove lower bounds? Well, how did we establish a lower bound to the
optimum in our LP-based 2-approximate algorithm? We used the fact that the optimum
of the linear programming relaxation (7.3) is a lower bound to the minimum vertex cover
optimum. The next idea is to observe that the cost of any feasible solution to the dual of
(7.3) is a lower bound to the optimum of (7.3), by weak duality, and hence a lower bound
to the vertex cover optimum as well.

Let us construct the dual of (7.3). Before starting, we note that if we remove the xv ≤ 1
constraints we are not changing the problem, because any solution in which some variables
xv are larger than 1 can be changed to a solution in which every xv is at most one while
decreasing the objective function, and without contradicting any constraint, so that an
optimal solution cannot have any xv larger than one. Our primal is thus the LP in standard
form

minimize
∑

v∈V c(v)xv
subject to

xu + xv ≥ 1 ∀(u, v) ∈ E
xv ≥ 0 ∀v ∈ V

(7.4)
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Its dual has one variable y(u,v) for every edge (u, v), and it is

maximize
∑

(u,v)∈E

y(u,v)

subject to ∑
u:(u,v)∈E

y(u,v) ≤ c(v) ∀v ∈ V

y(u,v) ≥ 0 ∀(u, v) ∈ E

(7.5)

That is, we want to assign a nonnegative “charge” y(u,v) to each edge, such that the total
charge over all edges is as large as possible, but such that, for every vertex, the total charge
of the edges incident on the vertex is at most the cost of the vertex. From weak duality and
from the fact that (7.4) is a relaxation of vertex cover, we have that for any such system of
charges, the sum of the charges is a lower bound to the cost of the minimum vertex cover
in the weighted graph G = (V,E) with weights c(·).

Example 7.1 (Matchings) Suppose that we have an unweighted graph G = (V,E), and
that a set of edges M ⊆ E is a matching. Then we can define y(u,v) := 1 if (u, v) ∈M and
y(u,v) := 0 if (u, v) 6∈M . This is a feasible solution for (7.5) of cost |M |.

This means that any lower bound to the optimum in the unweighted case via matchings can
also be reformulated as lower bounds via feasible solutions to (7.5). The latter approach,
however, is much more powerful.

Example 7.2 Consider the weighted star graph from Section 7.2. We can define y(a,x) = 1
for each vertex x = b, c, d, e, f , and this is a feasible solution to (7.5). This proves that the
vertex cover optimum is at least 5.

7.5 Linear-Time 2-Approximation of Weighted Vertex Cover

Our algorithm will construct, in parallel, a valid vertex cover S, in the form of a valid
integral solution x to the ILP formulation of vertex cover (7.2), and a feasible solution y to
the dual (7.5) of the linear programming relaxation, such that the cost of y is at least half
the cost S. Before starting, it is helpful to reformulate our old algorithms in this language

• Input: undirected, unweighted, graph G = (V,E)

• x = (0, · · · , 0)

• y = (0, · · · , 0)

• for each edge (u, v) ∈ E

– if xu < 1 and xv < 1 then
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∗ y(u,v) := 1
∗ xu := 1
∗ xv := 1

• S := {v : xv = 1}

• return S,y

Our goal is to modify the above algorithm so that it can deal with vertex weights, while
maintaining the property that it finds an integral feasible x and a dual feasible y such that∑

v∈V c(v)xv ≤ 2 ·
∑

(u,v)∈V yu,v. The key property to maintain is that when we look at the
edge (u, v), and we find it uncovered, what we are going to “spend” in order to cover it will
be at most 2yu,v, where yu,v will be a charge that we assign to (u, v) without violating the
constraints of (7.5).

We will get simpler formulas if we think in terms of a new set of variables pv, which represent
how much we are willing to “pay” in order to put v in the vertex cover; at the end, if pv = cv
then the vertex v is selected, and xv = 1, and if pv < cv then we are not going to use v
in the vertex cover. Thus, in the integral solution, we will have xv = bpv/c(v)c, and so
c(v) · xv ≤ pv and so the total amount we are willing to pay,

∑
v pv is an upper bound to

the cost of the integral solution
∑

v c(v) · xv.
Initially, we start from the all-zero dual solution y = 0 and from no commitment to pay
for any vertex, p = 0. When we consider an edge (u, v), if pu = c(u) or pv = c(v), we
have committed to pay for at least one of the endpoints of (u, v), and so the edge will be
covered. If pu < c(u) and pv < c(v), we need to commit to pay for at least one of the
endpoints of the edge. We need to pay an extra c(u) − pu to make sure u is in the vertex
cover, or an extra c(v)− pv to make sure that v is. We will raise, and here is the main idea
of the algorithm, both the values of pu and pv by the smallest of the two values. This will
guarantee that we cover (u, v) by “fully funding” one of the endpoints, but it will also put
some extra “funding” into the other vertex, which might be helpful later. We also set y(u,v)

to min{c(u)− pu, c(v)− pv}.
Here is the psedocode of the algorithm:

• Input: undirected, unweighted, graph G = (V,E)

• p = (0, · · · , 0)

• y = (0, · · · , 0)

• for each edge (u, v) ∈ E

– if pu < c(u) and pv < c(v) then

∗ y(u,v) := min{c(u)− pu, c(v)− pv}
∗ pu := pu + min{c(u)− pu, c(v)− pv}
∗ pv := pv + min{c(u)− pu, c(v)− pv}
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• S := {v : pv ≥ c(v)}

• return S,y

The algorithm outputs a correct vertex cover, because for each edge (u, v), the algorithm
makes sure that at least one of pu = c(u) or pv = c(v) is true, and so at least one of u or v
belongs to S at the end.

Clearly, we have

cost(S) =
∑
v∈S

c(v) ≤
∑
v∈V

pv

Next, we claim that the vector y at the end of the algorithm is a feasible solution for the
dual (7.5). To see this, note that, for every vertex v,

∑
u:(u,v)∈E

y(u,v) = pv

because initially all the y(u,v) and all the pv are zero, and when we assign a value to a
variable y(u,v) we also simultaneously raise pu and pv by the same amount. Also, we have
that, for every vertex v

pv ≤ c(v)

by construction, and so the charges y satisfy all the constraints

∑
u:(u,v)∈E

y(u,v) = c(v)

and define a feasible dual solution. We then have

∑
(u,v)∈E

y(u,v) ≤ optV C(G)

by weak duality. Finally, every time we give a value to a y(u,v) variable, we also raise the
values of pu and pv by the same amount, and so the sum of our payment commitments is
exactly twice the sum of the charges y(u,v)∑

v∈V
pv = 2

∑
(u,v)∈E

y(u,v)

Putting all together we have

cost(S) ≤ 2 · optV C(G)
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and we have another 2-approximate algorithm for weighted vertex cover!

It was much more complicated than the simple rounding scheme applied to the linear
programming optimum, but it was worth it because now we have a linear-time algorithm,
and we have understood the problem quite a bit better.
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Lecture 8

Randomized Rounding

In which we show how to round a linear programming relaxation in order to approximate
the set cover problem, and we show how to reason about the dual of the relaxation to derive
a simple combinatorial approximation algorithm for the weighted case.

Recall that in Set Cover we are given a finite set U and a collection S1, . . . , Sn of subsets of
U . We want to find the fewest sets whose union is U , that is, the smallest I ⊆ {1, . . . , n}
such that

⋃
i∈I Si = U .

We described an algorithm whose approximation guarantee is ln |U | + O(1). The lower
bound technique that we used in our analysis was to realize that if we have a subset D ⊆ U
of elements, such that every set Si contains at most t elements of D, then opt ≥ |D|/t.
Today we will describe a linear programming relaxation of set cover, and we will show a
way to round it, in order to achieve an O(log |U |) approximation.

We will also show that the lower bounds to the optimum that we used in the analysis of
the greedy algorithm can also be expressed as feasible solutions for the dual of our linear
programming relaxation.

8.1 A Linear Programming Relaxation of Set Cover

We begin by formulating the set cover problem as an Integer Linear Programming problem.
Given an input (U, S1, . . . , Sn) of the set cover problem, we introduce a variable xi for every
set Si, with the intended meaning that xi = 1 when Si is selected, and xi = 0 otherwise.
We can express the set cover problem as the following integer linear program:

minimize
∑n

i=1 xi
subject to ∑

i:v∈Si
xi ≥ 1 ∀v ∈ U

xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ∈ N ∀i ∈ {1, . . . , n}

(8.1)
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From which we derive the linear programming relaxation

minimize
∑n

i=1 xi
subject to ∑

i:v∈Si
xi ≥ 1 ∀v ∈ U

xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ≥ 0 ∀i ∈ {1, . . . , n}

(8.2)

Remark 8.1 In an earlier lecture, we noted that every instance G of the vertex cover
problem can be translated into an instance (U, S1, . . . , Sn) of the set cover problem in which
every element of U belongs precisely to two sets. The reader should verify that the linear
programming relaxation (8.2) of the resulting instance of set cover is identical to the linear
programming relaxation of the vertex cover problem on the graph G.

More generally, it is interesting to consider a weighted version of set cover, in which we are
given the set U , the collection of sets S1, . . . , Sn, and also a weight wi for every set. We
want to find a sub-collection of minimal total weight whose union is U , that is, we want to
find I such that

⋃
i∈I Si = U , and such that

∑
i∈I wi is minimized. The unweighted problem

corresponds to the case in which all weights wi equal 1.

The ILP and LP formulation of the unweighted problem can easily be generalized to the
weighted case: just change the objective function from

∑
i xi to

∑
iwixi.

minimize
∑n

i=1wixi
subject to ∑

i:v∈Si
xi ≥ 1 ∀v ∈ U

xi ≤ 1 ∀i ∈ {1, . . . , n}
xi ≥ 0 ∀i ∈ {1, . . . , n}

(8.3)

Suppose now that we solve the linear programming relaxation (8.3), and we find an optimal
fractional solution x∗ to the relaxation, that is, we are given a number x∗i in the range [0, 1]
for every set Si. Unlike the case of vertex cover, we cannot round the x∗i to the nearest
integer, because if an element u belongs to 100 sets, it could be that x∗i = 1/100 for each
of those sets, and we would be rounding all those numbers to zero, leaving the element u
not covered. If we knew that every element u belongs to at most k sets, then we could
round the numbers ≥ 1/k to 1, and the numbers < 1/k to zero. This would give a feasible
cover, and we could prove that we achieve a k-approximation. Unfortunately, k could be
very large, even n/2, while we are trying to prove an approximation guarantee that is never
worse than O(log n).

Maybe the next most natural approach after rounding the x∗i to the nearest integer is
to think of each x∗i as a probability, and we can think of the solution x∗ as describing a
probability distribution over ways of choosing some of the subsets S1, . . . , Sn, in which we
choose S1 with probability x∗1, S2 with probability x∗2, and so on.
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Algorithm RandomPick

• Input: values (x1, . . . , xn) feasible for (8.3)

• I := ∅

• for i = 1 to n

– with probability xi, assign I := I ∪ {i}, otherwise do nothing

• return I

Using this probabilistic process, the expected cost of the sets that we pick is
∑

iwix
∗
i , which

is the same as the cost of x∗ in the linear programming problem, and is at most the optimum
of the set cover problem. Unfortunately, the solution that we construct could have a high
probability of missing some of the elements.

Indeed, consider the probabilistic process “from the perspective” of an element u. The
element u belongs to some of the subsets, let’s say for simplicity the first k sets S1, . . . , Sk.
As long as we select at least one of S1, . . . , Sk, then we are going to cover u. We select
Si with probability x∗i and we know that x∗1 + · · ·x∗k ≥ 1; what is the probability that u
is covered? It is definitely not 1, as we can see by thinking of the case that u belongs to
only two sets, and that each set has an associated x∗i equal to 1/2; in such a case u is
covered with probability 3/4. This is not too bad, but maybe there are n/10 elements like
that, each having probability 1/4 of remaining uncovered, so that we would expect n/40
uncovered elements on average. In some examples, Ω(n) elements would remain uncovered
with probability 1− 2−Ω(n). How do we deal with the uncovered elements?

First of all, let us see that every element has a reasonably good probability of being covered.

Lemma 8.2 Consider a sequence of k independent experiments, in which the i-th experi-
ment has probability pi of being successful, and suppose that p1 + · · ·+ pk ≥ 1. Then there
is a probability ≥ 1− 1/e that at least one experiment is successful.

Proof: The probability that no experiment is successful is

(1− p1) · · · · (1− pk) (8.4)

This is the kind of expression for which the following trick is useful: 1− x is approximately
e−x for small values of x.

More precisely, using the Taylor expansion around 0 of ex, we can see that, for 0 ≤ x ≤ 1

e−x = 1− x+
x2

2
− x3

3!
+ · · ·

and so

1− x ≤ e−x (8.5)
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because

e−x − (1− x) =
(
x2

2
− x3

3!

)
+
(
x4

4!
− x5

5!

)
· · · ≥ 0

where the last inequality follows from the fact that we have an infinite sum of non-negative
terms.

Combining (8.4) and (8.5) we have

(1− p1) · · · · (1− pk) ≤ e−p1−...−pk ≤ e−1

�

Our randomized rounding process will be as follows: we repeat the procedure RandomPick
until we have covered all the elements.

Algorithm RandomizedRound

1. Input: x1, . . . , xn feasible for (8.3)

2. I := ∅

3. while there are elements u such that u 6∈
⋃
i∈I Si

• for i := 1 to n

– with probability xi, assign I := I ∪{i}, otherwise do nothing

4. return I

How do we analyze such a procedure? We describe a very simple way to get a loose estimate
on the quality of the cost of the solution found by the algorithm.

Fact 8.3 There is a probability at most e−100 that the while loop is executed for more than
ln |U | + 100 times. In general, there is a probability at most e−k that the while loop is
executed form more than ln |U |+ k times.

Proof: The probability that we need to run the while loop for more than ln |U | + k
times is the same as the probability that, if we run the body of the while loop (that is,
the RandomPick procedure) for exactly ln |U | + k steps, we end up with some uncovered
elements.

Consider an element v ∈ U . For each iteration of the while loop, there is a probability at
most 1/e that v is not covered by the sets added to I in that iteration. The probability
that v is not covered after ln |U |+ k iterations is then at most

(
1
e

)ln |U |+k
=

1
|U |
· e−k
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The probability that, after ln |U | + k iterations, there is an element that is not covered, is
at most the sum over all v of the probability that v is not covered, which is at most e−k. �

Fact 8.4 Fix any positive integer parameter t and any feasible solution (x1, . . . , xn) for
(8.3). Then the expected size of I in Algorithm RandomizedRound on input (x1, . . . , xn)
after t iterations (or at the end of the algorithm, if it ends in fewer than t iterations) is at
most

t ·
n∑
i=1

wixi

Proof: Let A1, . . . , At be the total cost of the elements assigned to I by the algorithm
during the first, second, . . ., t-th iteration, respectively. Let W denote the total weight∑

i∈I wi after t iterations (or at the end of the algorithm if it terminates in fewer than t
iterations). Note that these are random variables determined by the random choices made
by the algorithm. Clearly, we have, with probability 1,

W ≤ A1 + · · ·+At

where we do not have equality because certain elements might be assigned to I in more
than one iteration.

If the algorithm stops before the j-th iteration, then Aj = 0, because there is no j-th itera-
tion and so no assignment happens during it. Conditioned on the j-th iteration occurring,
the expectation of Aj is

E[Aj |jth iteration happens ] =
n∑
i=1

wixi

and so we have

E[Aj ] ≤
n∑
i=1

wixi

�

Recall that Markov’s inequality says that if X is a non-negative random variable (for ex-
ample, the size of a set), then, for every c > EX

P[X ≥ c] ≤ EX
c

For example, P[X ≥ 2 EX] ≤ 1/2.

We can combine these observations to get a rather loose bound on the size of the set output
by RandomizedRound
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Fact 8.5 Given an optimal solution (x∗1, . . . , x
∗
n) to (8.3), algorithm RandomizedRound out-

puts, with probability ≥ .45, a feasible solution to the set cover problem that contains at most
(2 ln |U |+ 6) · opt sets.

Proof: Let t := ln |U | + 3. There is a probability at most e−3 < .05 that the algorithm
runs the while loop for more than t steps. After the first t steps, the expected total weight
of the solution I is at most t

∑
iwix

∗
i , which is at most t · opt. Thus, the probability that

the solution I, after the first t steps, contains sets of total weight more than 2t · opt is at
most 1/2. Taking the union of the two events, there is a probability at most .55 that either
the algorithm runs for more than t iterations, or that it adds to its solution sets of total
cost more than 2t · opt in the first t steps.

Equivalently, there is a probability at least .45 that the algorithm halts within t iterations
and that, within that time, it constructs a solution of total cost at most 2t · opt. �

8.2 The Dual of the Relaxation

In a past lecture, we analyzed a simple greedy algorithm for unweighted set cover, that re-
peatedly picks a set that covers the largest number of uncovered elements, until all elements
are covered, and we proved that the algorithm uses at most (ln |U |+O(1)) · opt sets.

As in all analyses of approximation algorithms, we had to come up with ways to prove
lower bounds to the optimum. In the unweighted case, we noted that if we have a subset
D ⊆ U of elements (D for “difficult” to cover), and every Si contains at most t elements
of D, then opt ≥ |D|/t. In the weighted case, neither this lower bound technique nor the
approximation analysis works. It is possible to modify the algorithm so that, at every step,
it picks the set that is most “cost-effective” at covering uncovered elements, and we can
modify the analysis to take weights into accounts. This modification will be easier to figure
out if we first think about the analysis of our previous algorithm in terms of the dual of the
LP relaxation of set cover.

To form the dual of (8.3), we first note that the constraints xi ≤ 1 do not change the
optimum, because a solution in which some xis are bigger than 1 can be converted to a
solution in which all variables are ≤ 1 while decreasing the objective function, and so no
variable is larger than 1 in an optimal solution, even if we do not have the constraint xi ≤ 1.

If we work with this simplified version of the LP relaxation of set cover

minimize
∑n

i=1wixi
subject to ∑

i:v∈Si
xi ≥ 1 ∀v ∈ U

xi ≥ 0 ∀i ∈ {1, . . . , n}

(8.6)

we see that its dual is an LP with one variable yv for every element v ∈ U , and it is defined
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as follows:

maximize
∑

v∈U yv
subject to ∑

v:v∈Si
yv ≤ wi ∀i ∈ {1, . . . , n}

yv ≥ 0 ∀v ∈ U

(8.7)

That is, we assign a “charge” to every element, subject to the constraint that, for every
set, the sum of the charges of the elements of the set are at most 1. The cost of the dual
solution (and a lower bound to the optimum of the set cover problem) is the sum of the
charges.

In the unweighted case, wi = 1 for every i. Suppose that we are in the unweighted case,
and that we notice a set D ⊆ U of elements such that every Si contains at most t elements
of D. Then we can form the feasible dual solution

yv :=
{

1
t if v ∈ D
0 otherwise

This is a feasible dual solution of cost |D|/t, and so it is a way to formulate our old lower
bound argument in the language of dual solutions. The simplest extension of this example
to the weighted setting is that: if we have a set D of elements such that for every set Si
of weight wi we have that Si contains at most t · wi elements of D; then the assignment
yv := 1/t for v ∈ D and yv := 0 for v 6∈ D is a feasible dual solution of cost |D|/t, and so
the optimum is at most |D|/t.
These observations are already enough to derive a version of the greedy algorithm for
weighted instances.

Algorithm: SetCoverGreedy

• Input: set U , subsets S1, . . . , Sn, weights w1, . . . , wn

• I := ∅

• while there are uncovered elements v ∈ U such that v 6∈ Si for every i ∈ I

– let D be the set of uncovered elements

– for every set Si, let ei := |D ∩ Si|/wi be the cost effectiveness of Si
– let Si∗ be a set with the best cost-effectiveness

– I := I ∪ {i∗}

• return I

We adapt the analysis of the unweighted case.

Let v1, . . . , vm be an enumeration of the elements of U in the order in which they are covered
by the algorithm. Let cj be the cost-effectiveness of the set that was picked at the iteration
in which vj was covered for the first time. Then, in that iteration, there is a set D of at
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least m − j + 1 elements, and every set Si of weight wi contains at most wicj elements of
D. This means that setting yv1 = · · · = yvj−1 = 0 and yvj = · · · = yvm = 1/cj is a feasible
dual solution of cost (m− j + 1)/cj , and so

opt ≥ (m− j + 1)
1
cj

If we denote by apx the cost of the solution found by our algorithm, we see that

apx =
m∑
j=1

1
cj

because, at each iteration, if we pick a set Si∗ of weight wi∗ that covers t new elements,
then each of those t elements has a parameter cj equal to t/wi∗ , and so when we sum 1/cj
over all elements vj that are covered for the first time at that iteration, we get exactly the
weight wi∗ .

Rearranging the equations, we get again

apx ≤
m∑
j=1

1
m− j + 1

· opt ≤ (lnm+O(1)) · opt



Lecture 9

Max Flow

In which we introduce the maximum flow problem.

9.1 Flows in Networks

Today we start talking about the Maximum Flow problem. As a motivating example,
suppose that we have a communication network, in which certain pairs of nodes are linked
by connections; each connection has a limit to the rate at which data can be sent. Given
two nodes on the network, what is the maximum rate at which one can send data to the
other, assuming no other pair of nodes are attempting to communicate?

For example, consider the following network, and suppose that a needs to send data at a
rate of 6Mb/s to e. Is this possible?

The answer is yes: a can split its stream of data, and send 4Mb/s to c and 2Mb/s to b.
The node b relays the 2Mb/s stream of data that it receives from a to d, while node c splits
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the 4Mb/s stream that it receives into two parts: it relays 3Mb/s of data to e, and send
the remaining 1Mb/s to d. Overall, d receives 3Mb/s of data, which it relays to e.

Can a send more data, such as, say, 7Mb/s to e? The answer is no. Consider the two links
(b, d) and (a, c) in the network, and suppose you removed them from the network. Then
there would be no way reach e from a, and no communication would be possible. This
means that all the data that a sends to e must pass through one of those links. Between
the two of them, the two links (b, d) and (a, c) support at most the transmission of 6Mb/s
of data, and so that is the maximum rate at which a can send data to e.

The networks that we will work with could model other settings in which “stuff” has to
go from one place to another, subject to capacity constraints in links. For example the
network could model a public transit system, or a highway system. In some cases, we will
be interested in instances of the problem which are constructed to model other combinatorial
problems.

In some such applications, it makes sense to consider networks in which the capacity of a
link depends on the direction, so that the capacity of the link u → v could be different
from the capacity of the link v → u. Formally, an instance of the maximum flow problem
is defined as follows.

Definition 9.1 A network is a directed graph G(V,E), in which

• a vertex s ∈ V and a vertex t ∈ V are specified as being the source node and the sink
node, respectively.

• every directed edge (u, v) ∈ E has a positive capacity c(u, v) > 0 associated to it. If
both the edges (u, v) and (v, u) belong to E, we allow their capacities to be different.

Sometimes we will write expressions that include capacities between pairs of vertices that
are not connected by an edge. In that case the convention is that the capacity is zero.

A flow in a network is a specification of how to route “stuff” from s to t so that no link
is used beyond its capacity, and so that every link, except the sender s and the receiver
t, relays out “stuff” at exactly the same rate at which it receives from other vertices. In
the motivating example of a communication network, if nodes where sending out less data
than they receive, there would be data loss, and they cannot send out more data than they
receive because they are simply forwarding data. Formally, we have the following definition.

Definition 9.2 A flow in an network (G, s, t, c) is an assignment of a non-negative number
f(u, v) to every edge (u, v) ∈ E such that

• For every edge (u, v) ∈ E, f(u, v) ≤ c(u, v);

• For every vertex v ∈ V ,
∑

u∈V f(u, v) =
∑

w∈V f(v, w)

where we follow the convention that f(u, v) = 0 if (u, v) 6∈ E. (This convention is use-
ful otherwise the second condition would have to be something like

∑
u:(u,v)∈E f(u, v) =∑

w:(v,w)∈E f(v, w)
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The cost of the flow (the throughput of the communication, in the communication network
example) is

∑
v

f(s, v)

In the maximum flow problem, given a network we want to find a flow of maximum cost.

For example, here is an example of a network:

And the following is a flow in the network (a label x/y on an edge (u, v) means that the
flow f(u, v) is x and the capacity c(u, v) is y).

Is the flow optimal? We are only sending 3 units of flow from s to t, while we see that we
can send 2 units along the s→ a→ t path, and another 2 units along the s→ b→ t path,
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for a total of 4, so the above solution is not optimal. (Is the solution we just discussed, of
cost 4, optimal?)

In general, how do we reason about the optimality of a flow? This is an important question,
because when we talked about approximation algorithms for minimization problems we
noted that, in each case, we were able to reason about the approximation quality of an
algorithm only because we had ways to prove lower bounds to the optimum. Here that we
are dealing with a maximization problem, if we are going to reason about the quality of
solutions provided by our algorithms, we need ways to prove upper bounds to the optimum.

When we considered the first example of the lecture, we noticed that if we look at any set
of edges whose removal disconnects the receiver from the sender, then all the flow from
the sender to the receiver must pass through those edges, and so their total capacity is
an upper bound to the cost of any flow, including the optimal flow. This motivates the
following definition.

Definition 9.3 (Cut) A cut in a network (G = (V,E), s, t, c), is partition (A, V − A) of
the set of vertices V into two sets, such that s ∈ A and t ∈ V −A. We will usually identify
a cut with the set A that contains s. The capacity of a cut is the quantity

c(A) :=
∑

u∈A,v 6∈A
c(u, v)

The motivation for the definition is the following: let A be a cut in a network, that is, a
set of vertices that contains s and does not contain t. Consider the set of edges {(u, v) ∈
E : u ∈ A ∧ v 6∈ A}. If we remove those edges from the network, then it is not possible to
go from any vertex in A to any vertex outside A and, in particular, it is not possible to go
from s to t. This means that all the flow from s to t must pass through those edges, and
so the total capacity of those edges (that, is c(A)) is an upper bound to the cost of any
feasible flow.

Even though what we just said is rather self-evident, let us give a rigorous proof, because
this will help familiarize ourselves with the techniques used to prove rigorous results about
flows. (Later, we will need to prove statements that are far from obvious.)

Lemma 9.4 For every network (G, s, t, c), any flow f in the network, and any cut A,

∑
v∈V

f(s, v) ≤
∑

a∈A,b 6∈A
c(a, b)

That is, the cost of the flow is at most the capacity of the cut.

We will derive the lemma from Fact 9.5 below.

If (G, s, t, c) is a network, f is a flow, and A is a cut, define the net flow out of A to be

f(A) :=
∑

a∈A,b 6∈A
f(a, b)−

∑
b 6∈A,a∈A

f(b, a)
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that is, the total flow from A to V − A minus the total flow from V − A to A. Then we
have:

Fact 9.5 For every network (G, s, t, c), every flow f , and every cut A, the net flow out of
A is the same as the cost of the flow:

f(A) =
∑
v∈V

f(s, v)

Proof: Consider the expression

S :=
∑
v∈V

f(s, v)−
∑
a∈A

(∑
v∈V

f(v, a)−
∑
w∈V

f(a,w)

)
+

∑
a∈A,b 6∈A

f(a, b)−
∑

b∈B,a∈A
f(b, a)

on the one hand, we have
S = 0

because for every edge (u, v) such that at least one of u, v is in A we see that f(u, v) appears
twice in the expression for S, once with a + sign and once with a − sign, so all terms cancel.
On the other hand, we have

∑
a∈A

(∑
v∈V

f(v, a)−
∑
w∈V

f(a,w)

)
= 0

because of the definition of flow, and so∑
v∈V

f(s, v) =
∑

a∈A,b 6∈A
f(a, b)−

∑
b∈B,a∈A

f(b, a) = f(A)

�

To prove Lemma 9.4, consider any network (G, s, t, c), any flow f and any cut A. We have

cost(f) = f(A) ≤
∑

a∈A,b 6∈A
f(u, v) ≤

∑
a∈A,b 6∈A

c(u, v) = c(A)

So we have proved Lemma 9.4, and we have a way to “certify” the optimality of a flow, if
we are able to find a flow and a cut such that the cost of the flow is equal to the capacity
of the cut.

Consider now the complementary question: how do we see if a given flow in a network can
be improved? That is, what is a clear sign that a given flow is not optimal? If we see a path
from s to t such that all the edges are used at less than full capacity, then it is clear that
we can push extra flow along that path and that the solution is not optimal. Can there be
other cases in which a given solution is not optimal? Indeed there can. Going back to the
last example that we considered, we had a flow of cost 3, which was not optimal (because
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a flow of cost 4 existed), but if we look at the three possible paths from s to t, that is,
s→ a→ t, s→ a→ b→ t, and s→ b→ t, they each involve an edge used at full capacity.

However, let us reason in the following way: suppose that, in addition to the edges shown
in the last picture, there were also an edge of capacity 1 from b to a. Then we would have
had the path s → b → a → t in which every edge has one unit of residual capacity, and
we could have pushed an extra unit of flow along that path. In the resulting solution, a
sends one unit flow to b, and b sends one unit of flow to a, a situation that is perfectly
equivalent to a and b not sending each other anything, so that the extra edge from b to
a is not needed after all. In general, if we are sending f(u, v) units of flow from u to v,
then we are effectively increasing the capacity of the edge from v to u, because we can
“simulate” the effect of sending flow from v to u by simply sending less flow from u to v.
These observations motivate the following definition:

Definition 9.6 (Residual Network) Let N = (G, s, t, c) be a network, and f be a flow.
Then the residual network of N with respect to f is a network in which the edge u, v has
capacity

c(u, v)− f(u, v) + f(v, u)

The idea is that, in the residual network, the capacity of an edge measures how much more
flow can be pushed along that edge in addition to the flow f , without violating the capacity
constraints. The edge (u, v) starts with capacity c(u, v), and f(u, v) units of that capacity
are taken by the current flow; in addition, we have f(v, u) additional units of “virtual
capacity” that come from the fact that we can reduce the flow from v to u.

An augmenting path in a network is a path from s to t in which every edge has positive
capacity in the residual network. For example, in our last picture, the path s→ b→ a→ t
is an augmenting path.

The Ford-Fulkerson algorithm is a simple greedy algorithm that starts from an empty flow
and, as long as it can find an augmenting path, improves the current solution using the
path.
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Algorithm Ford-Fulkerson

• Input: network (G = (V,E), s, t, c)

• ∀u, v.f(u, v) := 0

• compute the capacities c′(·, ·) of the residual network

• while there is a path p from s to t such that all edges in the path have
positive residual capacity

– let c′min be the smallest of the residual capacities of the edges of p

– let f ′ be a flow that pushes c′min units of flow along p, that is,
f ′(u, v) = c′min if (u, v) ∈ p, and f ′(u, v) = 0 otherwise

– f := f + f ′, that is, ∀u, v.f(u, v) := f(u, v) + f ′(u, v)

– for every pair of vertices such that f(u, v) and f(v, u) are both
positive, let fmin := min{f(u, v), f(v, u)} and let f(u, v) :=
f(u, v)− fmin and f(v, u) := f(v, u)− fmin

– recompute the capacities c′(·, ·) of the residual network according
to the new flow

• return f

At every step, the algorithm increases the cost of the current solution by a positive amount
c′min and, the algorithm converges in finite time to a solution that cannot be improved via
an augmenting path. Note the “clean-up” step after the flow is increased, which makes sure
that flow pushed along a “virtual edge” in the residual network is realized by reducing the
actual flow in the opposite direction. The following theorem shows that the Ford-Fulkerson
algorithm is optimal, and it proves the important fact that whenever a cut is optimal, its
optimality can always be proved by exhibiting a cut whose capacity is equal to the cost of
the flow.

Theorem 9.7 (Max Flow-Min Cut) The following three conditions are equivalent for a
flow f in a network:

1. There is a cut whose capacity is equal to the cost of f

2. The flow f is optimal

3. There is no augmenting path for the flow f

Proof: We have already proved that (1) implies (2), and it is clear that (2) implies (3), so
the point of the theorem is to prove that (3) implies (1).

Let f be a flow such that there is no augmenting path in the residual network. Take A to
be the set of vertices reachable from s (including s) via edges that have positive capacity
in the residual network. Then:
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• s ∈ A by definition

• t 6∈ A otherwise we would have an augmenting path.

So A is a cut. Now observe that for every two vertices a ∈ A and b 6∈ A, the capacity of
the edge (a, b) in the residual network must be zero, otherwise we would be able to reach b
from s in the residual network via positive-capacity edges, but b 6∈ A means that no such
path can exist.

Recall that the residual capacity of the edge (a, b) is defined as

c(a, b)− f(a, b) + f(b, a)

and that f(a, b) ≤ c(a, b) and that f(b, a) ≥ 0, so that the only way for the residual capacity
to be zero is to have

• f(a, b) = c(a, b)

• f(b, a) = 0

Now just observe that the cost of the flow is

cost(f) = f(A) =
∑

a∈A,b 6∈A
f(a, b)−

∑
b 6∈A,a∈A

f(b, a) =
∑

a∈A,b 6∈A
c(a, b) = c(A)

and so the capacity of the cut is indeed equal to the cost of the flow. �

Remark 9.8 Suppose that we had defined the residual network as a network in which the
capacity of the edge (u, v) is c(u, v) − f(u, v), without the extra “virtual capacity” coming
from the flow from v to u, and suppose that we defined an augmenting path to be a path
from s to t in which each capacity in the residual network (according to this definition)
is positive. Then we have seen before an example of a flow that has no augmenting path
according to this definition, but that is not optimal. Where does the proof of the Max-Flow
Min-Cut theorem break down if we use the c(u, v)− f(u, v) definition of residual capacity?



Lecture 10

The Fattest Path

In which we discuss the worst-case running of the Ford-Fulkerson algorithm, discuss plausi-
ble heuristics to choose an augmenting path in a good way, and begin analyzing the “fattest
path” heuristic.

In the last lecture we proved the Max-Flow Min-Cut theorem in a way that also established
the optimality of the Ford-Fulkerson algorithm: if we iteratively find an augmenting path
in the residual network and push more flow along that path, as allowed by the capacity
constraints, we will eventually find a flow for which no augmenting path exists, and we
proved that such a flow must be optimal.

Each iteration of the algorithm takes linear time in the size of the network: the augmenting
path can be found via a DFS of the residual network, for example. The problem is that, in
certain cases, the algorithm might take a very long time to finish. Consider, for example,
the following network.

Suppose that, at the first step, we pick the augmenting path s → a → b → t. We can
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only push one unit of flow along that path. After this first step, our residual network (not
showing edges out of t and into s, which are never used in an augmenting path) is

Now it is possible that the algorithm picks the augmenting path s → b → a → t along
which, again, only one unit of flow can be routed. We see that, indeed, it is possible for the
algorithm to keep picking augmenting paths that involve a link between a and b, so that
only one extra unit of flow is routed at each step.

The problem of very slow convergence times as in the above example can be avoided if, at
each iteration, we choose more carefully which augmenting path to use. One reasonable
heuristic is that it makes sense to pick the augmenting path along which the most flow
can be routed in one step. If we had used such an heuristic in the above example, we
would have found the optimum in two steps. Another, alternative, heuristic is to pick the
shortest augmenting path, that is, the augmenting path that uses the fewest edges; this is
reasonable because in this way we are going to use the capacity of fewer edges and keep
more residual capacity for later iterations. The use of this heuristic would have also resulted
in a two-iterations running time in the above example.

10.1 The “fattest” augmenting path heuristic

We begin by studying the first heuristic: that is we consider an implementation of the
Ford-Fulkerson algorithm in which, at every iteration, we pick a fattest augmenting path in
the residual network, where the fatness of a path in a capacitated network is the minimum
capacity of the edges in the path. In the network of our previous example, the paths
s → a → t and s → b → t have fatness 1, 000, 000, while the path s → a → b → t has
fatness 1.

How do we find a fattest augmenting path? We will show that it can be found with a simple
modification of Dijkstra’s algorithm for finding shortest paths.
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10.1.1 Dijkstra’s algorithm

Let us first quickly recall how Dijkstra’s algorithm works. Suppose that we have a graph in
which each edge (u, v) has a length `(u, v) and, for two given vertices s, t, we want to find
the path of minimal length from s to t, where the length of a path is the sum of the lengths
of the edges in the path. The algorithm will solve, for free, the more general problem of
computing the length of the shortest path from s to v for every vertex v. In the algorithm,
the data structure that holds information about a vertex v has two fields: v.dist, which
will eventually contain the length of the shortest path from s to v, and v.pred which will
contain the predecessor of v in a shortest path from s to v, that is, the identity of the vertex
that comes immediately before v in such a path.

The distances are initialized to +∞, except for s.dist which is initialized to zero. The
algorithm initially puts all vertices in a priority queue Q. Recall that a priority queue is
a data structure that contains elements which have a numerical field called a key (in this
case the key is the dist field), and that supports the operation of inserting an element in
the queue, of finding and removing from the queue the element of minimal key value, and
of reducing the key field of a given element.

The algorithm works as follows:

Algorithm Dijkstra

• Input: graph G = (V,E), vertex s ∈ V , non-negative edge lengths `(·, ·)

• for each v ∈ V − {s}, let v.dist =∞

• s.dist = 0

• insert all vertices in a priority queue Q keyed by the dist field

• while Q is not empty

– find and remove vertex u in Q whose field u.dist is smallest among queue elements

– for all vertices v such that (u, v) ∈ E
∗ if v.dist > u.dist+ `(u, v) then
· v.dist := u.dist+ `(u, v)
· update Q to reflect changed value of v.dist
· u.pred := v

The running time is equal to whatever time it takes to execute |V | insert operations, |V |
remove-min operations, and |E| reduce-key operations in the priority queue. The simple
implementation of a priority queue via a binary heap gives O(log |V |) running time for
each operation, and a total running time of O((|E|+ |V |) · log |V |). A more elaborate data
structure called a Fibonacci heap implements insert and remove-min in O(log |V |) time, and
is such that k decrease-key operations always take at most O(k) time overall, so that the
total running time is O(|V | log |V |+ |E|).
Regarding correctness, we can prove by induction that the algorithm maintains the following
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invariant: at the beginning of each iteration of the while loop, the vertices x which are not
in the queue are such that x.dist is the correct value of the shortest path length from s to x
and such a shortest path can be realized by combining a shortest path from s to x.pred and
then continuing with the edge (x.pred, x). This is certainly true at the beginning, because
the first vertex to be removed is s, which is at distance s.dist = 0 from itself, and if it is true
at the end, when the queue is empty, it means that at the end of the algorithm all vertices
get their correct values of x.dist and x.pred. So we need to show that if the invariant is
true at a certain step then it is true at the following step.

Basically, all we need to prove is that, at the beginning of each iteration, the vertex u that
we remove from the queue has correct values of u.dist and u.pred. If we call x := u.pred,
then x is a vertex that was removed from the queue at an earlier iteration and so, by the
inductive hypothesis, is such that x.dist is the correct shortest path distance from s to x;
if x = u.pred we also have u.dist = x.dist + `(u, v), which means that there is indeed a
path of length u.dist from s to u in which x is the predecessor of u. We need to prove
that this path is a shortest path. So suppose toward a contradiction that there is a shorter
path p of length < u.dist. The path p starts at s, which is outside the queue, and ends at
u, which is in the queue, so at some point the path must have an edge (y, z) such that y
is outside the queue and z is inside. This also means that when y was removed from the
queue it had the correct value y.dist, and after we processed the neighbors of y we had
z.dist ≤ y.dist+ `(u, v). But this would mean that z.dist is at most the length of the path
p, while u.dist is bigger than the length of the path p, which is impossible because u was
chosen to be the element with the smallest u.dist among elements of the queue.

10.1.2 Adaptation to find a fattest path

What would be the most straightforward adaptation of Dijkstra’s algorithm to the problem
of finding a fattest path? In the shortest path problem, the length of a path is the sum of
the lengths of the edges of the path, and we want to find a path of minimal length; in the
fattest path problem, the fatness of a path is the minimum of the capacities of the edges of
the path, and we want to find a path of maximal fatness. So we just change sums to min,
lengths to capacities, and minimization to maximization.



10.1. THE “FATTEST” AUGMENTING PATH HEURISTIC 77

Algorithm Dijkstra-F

• Input: graph G = (V,E), vertex s ∈ V , non-negative edge capacities
c(·, ·)

• for each v ∈ V − {s}, let v.fat = 0

• s.dist =∞

• insert all vertices in a priority queue Q keyed by the dist field

• while Q is not empty

– find and remove vertex u in Q whose field u.fat is largest among
queue elements

– for all vertices v such that (u, v) ∈ E
∗ if v.fat < min{u.fat, c(u, v)} then
· v.fat := min{u.fat, c(u, v)}
· update Q to reflect changed value of v.dist
· u.pred := v

The running time is the same and, quite amazingly, the proof of correctness is also essentially
the same. (Try writing it up.)

Remark 10.1 A useful feature of Dijkstra’s algorithm (and other shortest path algorithms)
is that it works to find “best” paths for a lot of different measures of “cost” for a path, besides
length and fatness. Basically, the only requirements to implement the algorithm and prove
correctness are:

• The cost of a path u1 → u2 → · · ·ut is no better than the cost of an initial segment
u1 → u2 → · · ·uk, k < t of the path. That is, if we are trying to maximize the cost,
we need the property that the cost of a path is at most the cost of any initial segment
(e.g., the fatness of a path is at most the fatness of any initial segment, because in
the former case we are taking the minimum over a larger set of capacities); if we are
trying to minimize the cost, we need the property that the cost of a path is at least the
cost of any initial segment.

• The cost of a path u1 → u2 → · · · → ut−1 → ut can be determined by only knowing
the cost of the path u1 → u2 → · · · → ut−1 and the cost of the edge (ut−1, ut).

10.1.3 Analysis of the fattest augmenting path heuristic

In the next lecture, we will prove the following result.

Theorem 10.2 If (G = (V,E), s, t, c) is a network in which the optimal flow has cost opt,
then there is a path from s to t of fatness ≥ opt/m.
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From the above theorem, we se that if we implement the Ford-Fulkerson algorithm with
the fattest-path heuristic, then, after we have found t augmenting paths, we have a solution

such that, in the residual network, the optimum flow has cost at most opt ·
(

1− 1
2|E|

)t
.

To see why, call flowi the cost of the flow found by the algorithm after i iterations, and
resi the optimum of the residual network after i iterations of the algorithm. Clearly we
have resi = opt− flowi.
The theorem tells us that at iteration i + 1 we are going to find an augmenting path
of fatness at least resi · 1

2|E| . (Because of the “virtual capacities,” the residual network
could have as many as twice the number of edges of the original network, but no more.)
This means that the cost of the flow at the end of the (i + 1)-th iteration is going to be
flowi+1 ≥ flowi + resi · 1

2|E| , which means that the residual optimum is going to be

resi+1 = opt− flowi+1 ≤ opt−
(
flowi − resi ·

1
2|E|

)
= resi ·

(
1− 1

2|E|

)

We started with flow0 = 0 and res0 = opt, and so we must have rest ≤ opt ·
(

1− 1
2|E|

)t
.

If the capacities are integers, then if the residual network has an optimum less than 1, its
optimum must be zero. Recalling that 1− x ≤ e−x,

rest ≤ opt
(

1− 1
2|E|

)t
≤ opte−t/2|E| = eln opt−t/2|E|

This means that if t > 2|E| ln opt, then rest < 1, which implies rest = 0 and so it means
that, within the first 1+2|E| ln opt steps, the algorithm reaches a point in which the residual
network has no augmenting path and it stops.

We said that, using the simple binary heap implementation of Dijkstra’s algorithm, the
running time of one iteration is O((|V |+|E|)·log |V |), and so we have the following analysis.

Theorem 10.3 The fattest-path implementation of the Ford-Fulkerson algorithm, given in
input a network with integer capacities whose optimal flow has cost opt, runs in time at
most

O((|V |+ |E|) · |E| · log |V | · log opt)

To complete the above running time analysis, we need to prove Theorem 10.2, which we
will do in the next lecture.



Lecture 11

Strongly Polynomial Time
Algorithms

In which we prove that the Edmonds-Karp algorithm for maximum flow is a strongly poly-
nomial time algorithm.

11.1 Flow Decomposition

In the last lecture, we proved that the Ford-Fulkerson algorithm runs in time

O(|E|2 log |E| log opt)

if the capacities are integers and if we pick, at each step, the fattest path from s to t in the
residual network. In the analysis, we skipped the proof of the following result.

Theorem 11.1 If (G = (V,E), s, t, c) is a network in which the cost of the maximum flow
is opt, then there is a path from s to t in which every edge has capacity at least opt/|E|.

We derive the theorem from the following result.

Lemma 11.2 (Flow Decomposition) Let (G = (V,E), s, t, c) be a network, and f be a
flow in the network. Then there is a collection of feasible flows f1, . . . , fk and a collection
of s→ t paths p1, . . . , pk such that:

1. k ≤ |E|;

2. the cost of f is equal to the sum of the costs of the flows fi

3. the flow fi sends positive flow only on the edges of pi.
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Now we show how to prove Theorem 11.1 assuming that Lemma 11.2 is true.

We apply Lemma 11.2 to the maximum flow f of cost opt, and we find flows f1, . . . , fk and
paths p1, . . . , pk as in the Lemma. From the first two properties, we get that there is an i0
such that the cost of the flow fi0 is at least opt/|E|. From the third property, we have that
the ≥ opt/|E| units of flow of fi0 are carried using only the path pi0 , and so every edge of
pi0 must have capacity at least opt/|E|.
It remains to prove the Lemma.

Proof: (Of Lemma 11.2) Now we see how to construct flows with the above three proper-
ties. We do so via the following procedure:

• i := 1

• r := f

• while cost(r) > 0

– find a path from s to t using only edges (u, v) such that r(u, v) > 0, and call it
pi

– let fmin be the minimum of r(u, v) among the edges (u, v) ∈ pi
– let fi(u, v) := fmin for each (u, v) ∈ pi and fi(u, v) := 0 for the other edges
– let r(u, v) := r(u, v)− fi(u, v) for each (u, v)
– i := i+ 1

The “residual” flow r is initialized to be equal to f , and so its cost is the same as the cost
of f . At every step i, if the cost of r is still positive, we find a path pi from s to t entirely
made of edges with positive flow.

(Note that such a path must exist, because, if not, call A the set of nodes reachable from s
using edges (u, v) that have r(u, v) > 0; then A contains s and it does not contain t, and so
it is a cut and the net flow out of A is equal to cost of r; but there is no positive net flow
out of A, because all the edges from vertices of A to vertices not in A must have r(u, v) = 0;
this means that the cost of r must also be zero, which is a contradiction.)

We define the flow fi by sending along pi the smallest of the amounts of flow sent by r along
the edges of pi. Note that fi is feasible, because for every edge we have fi(u, v) ≤ r(u, v)
and, by construction, we also have r(u, v) ≤ f(u, v), and f was a feasible flow and so
f(u, v) ≤ c(u, v). We then decrease r(u, v) by fi(u, v) on each edge. This is still a feasible
flow, because we leave a non-negative flow on each edge and we can verify that we also
maintain the conservation constraints. After the update, the cost of r decreases precisely
by the same amount as the cost of fi, so we maintain the invariant that, after i steps, we
have

cost(f) = cost(r) + cost(f1) + · · ·+ cost(fi)

It remains to observe that, after the update of r, at least one of the edges that had positive
r(u, v) > 0 has now r(u, v) = 0. (This happens to the edge, or edges, that carry the
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minimum amount of flow along pi.) This means that, after i steps, the number of edges
(u, v) such that r(u, v) > 0 is at most |E| − i and that, in particular, the algorithm halts
within at most |E| iterations.

Call k the number of iterations after which the algorithm halts. When the algorithm halts,
cost(r) = 0, and so we have

cost(f) = cost(f1) + · · · cost(fk)

and so the flows and paths found by the algorithm satisfy all the requirements stated at
the beginning. �

The running time O(|E|2 log |E| log opt) is not terrible, especially considering that it is a
worst-case estimate and that often one has considerably faster convergence in practice.
There is, however, an undesirable feature in our analysis: the running time depends on the
actual values of the numbers that we get as input. An algorithm for a numerical problem
is called strongly polynomial if, assuming unit-time operations on numerical quantities, the
running time is at most a polynomial in the number of numerical quantities that we are
given as input. In particular, a maximum flow algorithm is strongly polynomial if it runs
in time polynomial in the number of edges in the network.

Today we describe the Edmonds-Karp algorithm, which is a simple variant of the Ford-
Fulkerson algorithm (the variant is that, in each iteration, the s → t path in the residual
network is found using a BFS). The Edmonds-Karp algorithm runs in strongly polynomial
time O(|V | · |E|2) in a simple implementation, and the worst-case running time can be
improved to O(|V |2 · |E|) with some adjustments.

We then begin to talk about an approach to solving the maximum flow problem which
is rather different from the Fulkerson-Ford approach, and which is based on the “push-
relabel” method. A simple implementation of the push-relabel method has running time
O(|V |2 ·|E|), and a more sophisticated implementation has worst-case running time O(|V |3).
We will only present the simpler algorithm.

11.2 The Edmonds-Karp Algorithm

The Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson algorithm in
which, at every step, we look for an s → t path in the residual network using BFS. This
means that, if there are several possible such paths, we pick one with a minimal number of
edges.

From now on, when we refer to a “shortest path” in a network, we mean a path that uses
the fewest edges, and the “length” of a path is the number of edges. The “distance” of a
vertex from s is the length of the shortest path from s to the vertex.

BFS can be implemented in O(|V + E|) = O(|E|) time, and so to complete our analysis of
the algorithm we need to find an upper bound to the number of possible iterations.

The following theorem says that, through the various iterations, the length of the shortest
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path from s to t in the residual network can only increase, and it does increase at the rate
of at least one extra edge in the shortest path for each |E| iterations.

Theorem 11.3 If, at a certain iteration, the length of a shortest path from s to t in the
residual network is `, then at every subsequent iteration it is ≥ `. Furthermore, after at
most |E| iterations, the distance becomes ≥ `+ 1.

Clearly, as long as there is a path from s to t, the distance from s to t is at most |V | − 1,
and so Theorem 11.3 tells us that, after at most |E| · (|V | − 1) iterations, s and t must
become disconnected in the residual network, at which point the algorithm terminates.
Each iteration takes time O(|E|), and so the total running time is O(|V | · |E|2).

Let us now prove Theorem 11.3.

Proof: Suppose that, after some number T of iterations, we have the residual network
R = (V,E′), s, t, c′) and that, in the residual network, the length of the shortest path from
s to t is `. Construct a BFS tree starting at s, and call V1, V2, . . ., Vk, . . ., the vertices in
the first, second, k-th, . . ., layer of the tree, that is, the vertices whose distance from s is
1, 2, . . ., and so on. Note that every edge (u, v) in the network is such that if u ∈ Vi and
v ∈ Vj then j ≤ i+ 1, that is, nodes can go from higher-numbered layer to lower numbered
layer, or stay in the same layer, or advance by at most one layer.

Let us call an edge (u, v) a forward edge if, for some i, u ∈ Vi and v ∈ Vi+1. Then a shortest
path from s to t must use a forward edge at each step and, equivalently, a path that uses a
non-forward edge at some point cannot be a shortest path from s to t.

What happens at the next iteration T + 1? We pick one of the length-` paths p from s to
t and we push flow through it. In the next residual network, at least one of the edges in p
disappears, because it has been saturated, and for each edge of p we see edges going in the
opposite direction. Now it is still true that for every edge (u, v) of the residual network at
the next step T + 1, if u ∈ Vi and v ∈ Vj , then j ≤ i+ 1 (where V1, . . . are the layers of the
BFS tree of the network at iteration T ), because all the edges that we have added actually
go from higher-numbered layers to lower-numbered ones. This means that, at iteration
T + 1 the distance of t from s is still at least `, because t ∈ V` and, at every step on a path,
we can advance at most by one layer.

(Note: we have proved that if the distance of t from s is ` at one iteration, then it is at
least ` at the next iteration. By induction, this is enough to say that if will always be at
least ` in all subsequent iterations.)

Furthermore, if there is a length-` path from s to t in the residual network at iteration T+1,
then the path must be using only edges which were already present in the residual network
at iteration T and which were “forward edges” at iteration T . This also means that, in all
the subsequent iterations in which the distance from s to t remains `, it is so because there
is a length-` path made entirely of edges that were forward edges at iteration T . At each
iteration, however, at least one of those edges is saturated and is absent from the residual
network in subsequent steps, and so there can be at most |E| iterations during which the
distance from s to t stays `. �



Lecture 12

The Push-Relabel Algorithm

In which we introduce the Push-Relabel algorithm, and prove that a basic implementation
of this algorithm runs in time O(|V |2 · |E|).

12.1 The Push-Relabel Approach

All maximum flow algorithms are based on the maximum flow – minimum cut theorem,
which says that if there is no s → t path in the residual network then the flow is optimal.
Our goal is thus to “simply” find a flow such that t is unreachable from s in the residual
network.

In algorithms based on the Ford-Fulkerson approach, we keep at every step a feasible flow,
and we stop when we reach a step in which there is no s→ t path in the residual network.

In algorithms based on the push-relabel method, we take a somewhat complementary ap-
proach: at every step we have an assignment of flows to edges which is not a feasible flow
(it violates the conservation constraints), which is called a preflow, but for which we can
still define the notion of a residual network. The algorithm maintains the condition that,
at every step, t is not reachable from s in the residual network. The algorithm stops when
the preflow becomes a feasible flow.

The basic outline of the algorithm is the following: we begin by sending as much flow out
of s as allowed by the capacities of the edges coming out of s, without worrying whether all
that flow can actually reach t. Then, at each iteration, we consider nodes that have more
incoming flow than outgoing flow (initially, the neighbors of s), and we route the excess
flow to their neighbors, and so on. The idea is that if we attempted to send too much flow
out of s in the first step, then the excess will eventually come back to s, while t will receive
the maximum possible flow. To make such an idea work, we need to make sure that we do
not keep sending the flow in circles, and that there is a sensible measure of “progress” that
we can use to bound the running time of the algorithm.

A main idea in the algorithm is to associate to each vertex v a height h[v], with the intuition
that the flow wants to go downhill, and we will take the action of sending extra flow from
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a vertex u to a vertex v only if h[u] > h[v]. This will help us avoid pushing flow around in
circles, and it will help us define a measure of “progress” to bound the running time.

Here is the outline of the algorithm. Given an assignment of flows f(u, v) to each edge
(u, v), and a vertex v, the excess flow at v is the quantity

ef (v) :=
∑
u

f(u, v)−
∑
w

f(v, w)

that is, the difference between the flow getting into v and the flow getting out of v. If f is
a feasible flow, then the excess flow is always zero, except at s and t.

• Input: network (G = (V,E), s, t, c)

• h[s] := |V |

• for each v ∈ V − {s} do h[v] := 0

• for each (s, v) ∈ E do f(s, v) := c(s, v)

• while f is not a feasible flow

– let c′(u, v) = c(u, v) + f(u, v) − f(v, u) be the capacities of the
residual network

– if there is a vertex v ∈ V − {s, t} and a vertex w ∈ V such that
ef (v) > 0, h(v) > h(w), and c′(v, w) > 0 then

∗ push min{c′(v, w), ef (v)} units of flow on the edge (v, w)

– else, let v be a vertex such that ef (v) > 0, and set h[v] := h[v]+1

• output f

As we said, the algorithm begins by pushing as much flow to the neighbors of s as allowed
by the capacities of the edges coming out of s. This means that we get some vertices with
positive excess flow, and some vertices with zero excess flow. Also, we do not violate the
capacity constraints. These properties define the notion of a preflow.

Definition 12.1 (Preflow) An assignment of a non-negative flow f(u, v) to each edge
(u, v) of a network (G = (V,E), s, t, c) is a preflow if

• for each edge (u, v), f(u, v) ≤ c(u, v)

• for each vertex v ∈ V − {t},∑
u

f(u, v)−
∑
w

f(v, w) ≥ 0

We will always assume that, for every pair of vertices u, v, at most one of f(u, v) and f(v, u)
is positive.
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A preflow in which all excess flows ef (v) are zero for each v ∈ V − {s, t} is a feasible flow.

The definition of residual network for a preflow is the same as for a flow; the capacity of an
edge (u, v) in the residual network is

c(u, v)− f(u, v) + f(v, u)

If the edge (u, v) has capacity ≥ r in the residual network corresponding to a preflow f , and
the vertex u has excess flow ≥ r, then we can send r units of flow from u to v (by increasing
f(u, v) and/or reducing f(v, u)) and create another preflow. In the new preflow, the excess
of u is r units less than before, and the excess flow of v is r units more than before.

Such a “shifting” of excess flow from one node to another is the basic operation of a push-
relabel algorithm, and it is called a push operation. If we push an amount of flow along
an edge equal to its capacity in the residual network, then we call it a saturating push,
otherwise we call it a nonsaturating push. We execute a push operation provided that we
find a pair of vertices such that we can push from a “higher” vertex to a “lower” vertex,
according to the height function h[·].
If the above operation is not possible, we take a vertex with excess flow, and we increase
its height. This operation is called a relabel operation.

The reader should try running this algorithm by hand on a few examples to get a sense of
how it works.

12.2 Analysis of the Push-Relabel Algorithm

We begin by showing that no vertex can reach a height bigger than 2 · |V | − 1. This
automatically puts an upper bound to the number of relabel operations that can be executed,
and is an important starting point in analyzing the number of push operations.

Lemma 12.2 At every step, if a vertex v has positive excess flow, then there is a path from
v to s in the residual network.

Proof: First, let us why this is “obvious:” in a preflow, vertices are allowed to “destroy”
stuff, but not to “create” it, so if a vertex has positive excess flow, then in particular it has
positive incoming flow, and the incoming stuff must be coming from s along a path made of
edges with positive flow. To each such edge corresponds an edge in the opposite direction
with positive capacity in the residual network, and so v is connected to s in the residual
network.

The only part of the above argument that is not rigorous is when we say that if a vertex
v has positive excess flow then there must be a path from s to v made entirely of edges
with positive flow. Let A be the set of vertices which are reachable from s via such a path.
Because of the preflow constraints on the vertices v 6∈ A, we have

∑
v 6∈A

ef (v) =
∑
v 6∈A

(∑
u

f(u, v)−
∑
w

f(v, w)

)
≥ 0
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but, in the second expression, all terms of the form f(x, y) in which x 6∈ A and y 6∈ A cancel,
because they appear once with a plus sign and once with a minus sign. The result of such
cancellations is

∑
v 6∈A

ef (v) =
∑

u∈A,v 6∈A
f(u, v)−

∑
v 6∈A,w∈A

f(v, w) ≤ 0

where the last inequality follows from the fact that f(u, v) must be zero when u ∈ A and
v 6∈ A.

So we have that ef (v) = 0 for every v 6∈ A, which means that every vertex v that has
ef (v) > 0 must be in A, and so it must be reachable from s via a path made of edges with
positive flow.�

The connection between the previous lemma and the task of bounding the heights of vertices
comes from the following observation.

Lemma 12.3 At every step, if there is an edge (u, v) that has positive capacity c′(u, v) > 0
in the residual network, then

h(u) ≤ h(v) + 1

Before proving the lemma, let us understand what it is getting at. Our intuition for the
heights, is that we want the flow to go “downhill,” and in fact every time we do a push
operation we do so from a higher vertex to a lower one. If the flow goes downhill, the edges
with positive residual capacity go “uphill.” This is not exactly true at each step, because of
the relabeling operations, but the lemma is saying that edges with positive residual capacity
cannot go downhill by more than one unit.

Proof: We show that the property is an invariant preserved by the algorithm at each step.

At the beginning, the residual network contains: (i) the edges of the original networks
between vertices other than s, and all such vertices have the same height 0, and (ii) edges
from the neighbors of s to s, and such edges go uphill.

Now we show that the property is preserved at each step.

If we do a relabel step on a vertex v, the property remains true for all the edges (u, v) with
positive capacity coming into v. About the edges (v, w) with positive capacity coming out
of v, if we did a relabel step it was because we had h(v) ≤ h(w); after the relabel, we still
have h(v) ≤ h(w) + 1.

If we do a push step along an edge (u, v), we might introduce the reverse edge (v, u) in the
residual network. The push step, however, happens only when h(u) > h(v), and so the edge
(v, u) satisfies the property. �

Fact 12.4 At every step, if there is a path from u to v in the residual network, then

h(u) ≤ h(v) + |V | − 1
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Proof: If there is a path of length ` from u to v in the residual network, then, by applying
` times Lemma 12.2, we have h(u) ≤ h(v) + `, and if there is a path from u to v there must
be a path of length at most |V | − 1. �

We can now being to draw conclusions that are relevant to our analysis.

Fact 12.5 At each step of the algorithm, there is no path from s to t in the residual network.

Because, if there were such a path, we would have h(s) ≤ h(t)+|V |−1, but at the beginning
we have h(s) = |V | and h(t) = 0, and the heights of s and t never change.

This means that if the algorithm terminates, then it outputs an optimal flow. From now
on, it remains to estimate the running time of the algorithm, which we do by finding upper
bounds to the number of times the various operations can be executed.

Fact 12.6 At each step of the algorithm, every vertex has height at most 2|V | − 1.

Proof: Each time the height of a vertex v is increased, it is because it has positive excess
flow. If a vertex v has positive excess flow, then there is a path from v to s in the residual
network. If there is such a path, then h(v) ≤ h(s) + |V | − 1 ≤ 2|V | − 1. �

Fact 12.7 The algorithm executes at most (|V |−2) · (2 · |V |−1) ≤ 2|V |2 relabel operations.

Proof: There are at most |V | − 2 vertices on which the relabel operation is admissible,
and on each of them the algorithm executes the operation at most 2 · |V | − 1 times. �

We now estimate the number of push operations.

We call a push operation saturating if it uses the entire residual capacity of edge, making
it disappear from the residual network. Otherwise, the push operation is nonsaturating.

Fact 12.8 The algorithm executes at most 2|V | · |E| saturating push operations.

Proof: Consider an edge (u, v). The first time there is a saturating push from u to v, it is
because h(u) > h(v). After the saturating push, the edge (u, v) disappears from the residual
network, and so there cannot be any other saturating push from u to v (and, indeed, no
push of any kind), until v sends back some flow to u with a push in the opposite direction.
But for this to happen we must first have h(v) > h(u), which requires at least two relabels
of v. For the next saturating push from u to v, we must have again h(u) > h(v), which
requires two more relabels, at least. So, between two saturating pushes from u to v, at least
four relabels must take place on u and v. Overall, u and v can relabeled at most 4|V | times,
and so there can be at most |V | saturating pushes.

There are 2 · |E| edges that can appear in the residual network, and so in total we have at
most 2 · |V | · |E| saturating pushes. �
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The most interesting part of the analysis is how we analyze the number of non-saturating
push operations.

At each step of the execution of the algorithm, we define the “energy” of the current preflow
f as

Φ(f) :=
∑

v:ef (v)>0

h(v)

the sum of the heights of all vertices that have positive excess flow. The algorithm starts
in a zero-energy state, but the energy becomes one after the first relabel operation. When
the energy becomes zero again, it is because there are no nodes with excess flow, and the
algorithm stops.

We have the following observations.

Fact 12.9 Each relabel step increases the energy by exactly one unit.

Fact 12.10 Each saturating push increases the energy by at most 2|V | units.

Proof: A push step along an edge (u, v) does not change the height of any vertex, but it
could give excess flow to vertex v, which possibly had zero excess flow before, so that the
energy increases by h(v) ≤ 2|V | units. �

Fact 12.11 Each nonsaturating push decreases the energy by at least one unit.

Proof: If we do a push on an edge (u, v), why would the push be nonsaturating? The
only reason why we would not saturate the edge is that the excess flow of u is less than
the residual capacity of (u, v), and so we can push the entire excess flow of u along (u, v)
with residual capacity to spare. But this means that, after a nonsaturing push along (u, v),
the excess flow of u becomes zero, and so h(u) is not counted in the energy any more. It
is possible that v had no excess flow before the push and now it does, which means that
we need to add h(v) in the energy, but we still have that the new energy is at most the old
energy minus h(u) plus h(v) and, recalling that we do a push only if h(v) < h(u), we have
that the new energy is at most the old energy minus one. �

Fact 12.12 The total number of nonsaturating pushes is at most 2|V |2 + 4|V |2|E|.

Proof: If, at some step of the execution of the algorithm, the preflow is not yet a feasible
flow, then the energy must by > 0. If, up to that point, the algorithm has executed r relabel
operations, sp saturating push operations, and np nonsaturating push operations, then

0 < Φ(f) ≤ r + 2|V |sp− np



12.3. IMPROVED RUNNING TIME 89

we now that r ≤ 2|V |2 and sp ≤ 2|V | · |E|, so the above expression implies

np < 2|V |2 + 4|V |2|E|

So if, at some point of the execution of the algorithm, we haven’t reached the termination
condition yet, this implies that we have executed fewer than 2|V |2 +4|V |2|E| nonsaturating
pushes.

Equivalently, when the algorithm terminates, it has executed at most 2|V |2 + 4|V |2|E|
nonsaturating pushes. �

Overall, we have a total of at most O(|V |2 · |E|) operations, and each can be implemented
in O(1) time, so the running time of the algorithm is O(|V |2 · |E|).

12.3 Improved Running Time

We note that the algorithm is somewhat underspecified, in the sense that there could be
more than one vertex out of which a push operation is allowed, and we are not saying how
to pick one; if no push operation is possible, any of the vertices with positive excess can be
picked for a relabel operation, and we are not specifying how to pick one. The analysis of
the running time applies to any possible way to make such choices.

A reasonable heuristic is that if we have the choice of multiple vertices out of which to
push flow, then we choose the vertex of biggest height. It can be proved (but we will not),
this implementation of the algorithm executes at most O(|V |2

√
|E|) nonsaturating pushes,

and so the running time is O(|V |2
√
|E|). A more complicated implementation, in which

multiple pushes are done together, and the dynamic tree data structure is used to keep
information about the current preflow, has running time O(|V | · |E| · log |V |). In terms of
worst-case running time, this is the best known for strongly polynomial algorithms.

An algorithm of Goldberg and Rao has running time

O((min{|E| · |V |2/3 , |E|1.5) · (log |V | · log opt))

In the interesting case in which |E| = O(|V |), this is roughly |V |1.5, compared the to the
|V |2 running time of the optimized push-relabel algorithm. This year, a new algorithm has
been discovered that, in undirected networks, finds a flow of cost ≥ (1 − ε) · opt in time
O(|E|4/3 · ε−4 · (log |V |)O(1)).

There has been extensive experimental analysis of maximum flow algorithms. The fastest
algorithms in practice are carefully tuned push-relabel implementations.
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Lecture 13

Edge Connectivity

In which we describe a randomized algorithm for finding the minimum cut in an undirected
graph.

13.1 Global Min-Cut and Edge-Connectivity

Definition 13.1 (Edge connectivity) We say that an undirected graph is k-edge-connected
if one needs to remove at least k edges in order to disconnect the graph. Equivalently, an
undirected graph is k-edge-connected if the removal of any subset of k − 1 edges leaves the
graph connected.

Note that the definition is given in such a way that if a graph is, for example 3-edge-
connected, then it is also 2-edge-connected and 1-edge connected. Being 1-edge-connected
is the same as being connected.

For example, the graph below is connected and 2-edge connected, but it is not 3-edge
connected, because removing the two edges (3, 7) and (1, 6) disconnects the graph.
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As another example, consider the 3-cube:

The 3-cube is clearly not 4-edge-connected, because we can disconnect any vertex by re-
moving the 3 edges incident on it. It is clearly connected, and it is easy to see that it is
2-edge-connected; for example we can see that it has a Hamiltonian cycle (a simple cycle
that goes through all vertices), and so the removal of any edge still leaves a path that goes
trough every vertex. Indeed the 3-cube is 3-connected, but at this point it is not clear how
to argue it without going through some complicated case analysis.

The edge-connectivity of a graph is the largest k for which the graph is k-edge-connected,
that is, the minimum k such that it is possible to disconnect the graph by removing k edges.
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In graphs that represent communication or transportation networks, the edge-connectivity
is an important measure of reliability.

Definition 13.2 (Global Min-Cut) The global min-cut problem is the following: given
in input an undirected graph G = (V,E), we want to find the subset A ⊆ V such that
A 6= ∅, A 6= V , and the number of edges with one endpoint in A and one endpoint in V −A
is minimized.

We will refer to a subset A ⊆ V such that A 6= ∅ and A 6= V as a cut in the graph, and we
will call the number of edges with one endpoint in A and one endpoint in V − A the cost
of the cut. We refer to the edges with one endpoint in A and one endpoint in V −A as the
edges that cross the cut.

We can see that the Global Min Cut problem and the edge-connectivity problems are in
fact the same problem:

• if there is a cut A of cost k, then the graph becomes disconnected (in particular, no
vertex in A is connected to any vertex in V −A) if we remove the k edges that cross the
cut, and so the edge-connectivity is at most k. This means that the edge-connectivity
of a graph is at most the cost of its minimum cut;

• if there is a set of k edges whose removal disconnects the graph, then let A be the
set of vertices in one of the resulting connected components. Then A is a cut, and
its cost is at most k. This means that the cost of the minimum cut is at most the
edge-connectivity.

We will discuss two algorithms for finding the edge-connectivity of a graph. One is a simple
reduction to the maximum flow problem, and runs in time O(|E| · |V |2). The other is a
surprising simple randomized algorithm based on edge-contractions – the surprising part
is the fact that it correctly solves the problem, because it seems to hardly be doing any
work. We will discuss a simple O(|V |3) implementation of the edge-contraction algorithm,
which is already better than the reduction to maximum flow. A more refined analysis and
implementation gives a running time O(|V |2 · (log |V |)O(1)).

13.1.1 Reduction to Maximum Flow

Consider the following algorithm:
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• Input: undirected graph G = (V,E)

• let s be a vertex in V (the choice does not matter)

• define c(u, v) = 1 for every (u, v) ∈ E

• for each t ∈ V − {s}

– solve the min cut problem in the network (G, s, t, c), and let At
be the cut of minimum capacity

• output the cut At of minimum cost

The algorithm uses |V | − 1 minimum cut computations in networks, each of which can be
solved by a maximum flow computation. Since each network can have a maximum flow
of cost at most |V | − 1, and all capacities are integers, the Ford-Fulkerson algorithm finds
each maximum flow in time O(|E| · opt) = O(|E| · |V |) and so the overall running time is
O(|E| · |V |2).

To see that the algorithm finds the global min cut, let k be edge-connectivity of the graph,
E∗ be a set of k edges whose removal disconnects the graph, and let A∗ be the connected
component containing s in the disconnected graph resulting from the removal of the edges
in E∗. So A∗ is a global minimum cut of cost at most k (indeed, exactly k), and it contains
s.

In at least one iteration, the algorithm constructs a network (G, s, t, c) in which t 6∈ A∗,
which means that A∗ is a valid cut, of capacity k, for the network, and so when the algorithm
finds a minimum capacity cut in the network it must find a cut of capacity at most k (indeed,
exactly k). This means that, for at least one t, the cut At is also an optimal global min-cut.

13.1.2 The Edge-Contraction Algorithm

Our next algorithm is due to David Karger, and it involves a rather surprising application
of random choices.

The algorithm uses the operation of edge-contraction, which is an operation defined over
multi-graphs, that is graphs that can have multiple edges between a given pair of vertices
or, equivalently, graphs whose edges have a positive integer weight.

If, in an undirected graph G = (V,E) we contract an edge (u, v), the effect is that the edge
(u, v) is deleted, and the vertices u and v are removed, and replaced by a new vertex, which
we may call [u, v]; all other edges of the graph remain, and all the edges that were incident
on u or v become incident on the new vertex [u, v]. If u had i edges connecting it to w, and
v had j edges connecting it to w, then in the new graph there will be i + j edges between
w and [u, v].

For example, if we contract the edge (000, 010) in the 3-cube we have the following graph.
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And if, in the resulting graph, we contract the edge (001, 011), we have the following graph.

Note that, after the two contractions, we now have two edges between the “macro-vertices”
[000, 010] and [001, 011].

The basic iteration of Karger’s algorithm is the following:

• while there are ≥ 3 vertices in the graph
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– pick a random edge and contract it

• output the set A of vertices of the original graph that have been contracted into one
of the two final macro-vertices.

One important point is that, in the randomized step, we sample uniformly at random among
the edges of the multi-set of edges of the current multi-graph. So if there are 6 edges between
the vertices (a, b) and 2 edges between the vertices (c, d), then a contraction of (a, b) is three
times more likely than a contraction of (c, d).

The algorithm seems to pretty much pick a subset of the vertices at random. How can we
hope to find an optimal cut with such a simple approach?

(In the analysis we will assume that the graph is connected. if the graph has two connected
components, then the algorithm converges to the optimal min-cut of cost zero. If there are
three or more connected components, the algorithm will discover them when it runs out
of edges to sample, In the simplified pseudocode above we omitted the code to handle this
exception.)

The first observation is that, if we fix for reference an optimal global min cut A∗ of cost
k, and if it so happens that there is never a step in which we contract one of the k edges
that connect A∗ with the rest of the graph then, at the last step, the two macro-vertices
will indeed be A∗ and V − A∗ and the algorithm will have correctly discovered an optimal
solution.

But how likely is it that the k edges of the optimal solution are never chosen to be contracted
at any iteration?

The key observation in the analysis is that if we are given in input a (multi-)graph whose
edge-connectivity is k, then it must be the case that every vertex has degree ≥ k, where the
degree of a vertex in a graph or multigraph is the number of edges that have that vertex as
an endpoint. This is because if we had a vertex of degree ≤ k− 1 then we could disconnect
the graph by removing all the edges incident on that vertex, and this would contradict the
k-edge-connectivity of the graph.

But if every vertex has degree ≥ k, then

|E| = 1
2

∑
v

degree(v) ≥ k

2
· |V |

and, since each edge has probability 1/|E| of being sampled, the probability that, at the
first step, we sample one of the k edges that cross the cut A∗ is only

k

|E|
≤ 2
|V |

What about the second step, and the third step, and so on?

Suppose that we were lucky at the first step and that we did not select any of the k edges
that cross A∗. Then, after the contraction of the first step we are left with a graph that
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has |V | − 1 vertices. The next observation is that this new graph has still edge-connectivity
k because the cut defined by A∗ is still well defined. If the edge-connectivity is still k, we
can repeat the previous reasoning, and conclude that the probability that we select one of
the k edges that cross A∗ is at most

2
|V | − 1

And now we see how to reason in general. If we did not select any of the k edges that cross
A∗ at any of the first step t− 1 step, then the probability that we select one of those edges
at step t is at most

2
|V | − t+ 1

So what is the probability that we never select any of those edges at any step, those ending
up with the optimal solution A∗? If we write Et to denote the event that “at step t, the
algorithm samples an edge which does not cross A∗,” then

P[E1 ∧ E2 ∧ · · · ∧ En−2]

= P[E1] · P[E2|E1] · . . .P[En−2|E1 ∧ · · · ∧ En−3]

≥
(

1− 2
|V |

)
·
(

1− 2
|V | − 1

)
· . . .

(
1− 2

3

)
If we write n := |V |, the product in the last line is

n− 2
n
· n− 3
n− 1

· n− 4
n− 2

· n− 5
n− 3

· . . . 4
6
· 3

5
· 2

4
· 1

3

which simplifies to

2
n · (n− 1)

Now, suppose that we repeat the basic algorithm r times. Then the probability that it does
not find a solution in any of the r attempts is at most(

1− 2
n · (n− 1)

)r
So, for example, if we repeat the basic iteration 50n · (n − 1) times, then the probability
that we do not find an optimal solution is at most

(
1− 2

n · (n− 1)

)50n·(n−1)

≤ e−100
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(where we used the fact that 1− x ≤ e−x), which is an extremely small probability.

One iteration of Karger’s algorithm can be implemented in time O(|V |), so overall we have
an algorithm of running time O(|V |3) which has probability at least 1− e−100 of finding an
optimal solution.



Lecture 14

Algorithms in Bipartite Graphs

In which we show how to solve the maximum matching problem and the minimum vertex
cover problem in bipartite graphs.

In this lecture we show applications of the theory of (and of algorithms for) the maximum
flow problem to the design of algorithms for problems in bipartite graphs.

A bipartite graph is an undirected graph G = (V,E) such that the set of vertices V can be
partitioned into two subsets L and R such that every edge in E has one endpoint in L and
one endpoint in R.

For example, the 3-cube is bipartite, as can be seen by putting in L all the vertices whose
label has an even number of ones and in R all the vertices whose label has an odd number
of ones.

There is a simple linear time algorithm that checks if a graph is bipartite and, if so, finds
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a partition of V into sets L and R such that all edges go between L and R: run DFS and
find a spanning forest, that is, a spanning tree of the graph in each connected component.
Construct sets L and R in the following way. In each tree, put the root in L, and then put
in R all the vertices that, in the tree, have odd distance from the root; put in L all the
vertices that, in the tree, have even distance from the root. If the resulting partition is not
valid, that is, if there is some edge both whose endpoints are in L or both whose endpoints
are in R, then there is some tree in which two vertices u, v are connected by an edge, even
though they are both at even distance or both at odd distance from the root r; in such a
case, the cycle that goes from r to u along the tree, then follows the edge (u, v) and then
goes from v to r along the three is an odd-length cycle, and it is easy to prove that in a
bipartite graph there is no odd cycle. Hence the algorithm either returns a valid bipartition
or a certificate that the graph is not bipartite.

Several optimization problems become simpler in bipartite graphs. The problem of finding
a maximum matching in a graph is solvable in polynomial time in general graphs, but it has
a very simple algorithm in bipartite graphs, that we shall see shortly. (The algorithm for
general graphs is beautiful but rather complicated.) The algorithm is based on a reduction
to the maximum flow problem. The reduction has other applications, because it makes the
machinery of the max flow - min cut theorem applicable to reason about matchings. We
are going to see a very simple proof of Hall’s theorem, a classical result in graph theorem,
which uses the max flow - min cut theorem.

As another application, we are going to show how to solve optimally the minimum vertex
cover problem in bipartite graphs using a minimum cut computation, and the relation
between flows and matchings. In general graphs, the minimum vertex cover problem is
NP-complete.

The problem of finding a maximum matching in a graph, that is, a matching with the
largest number of edges, often arises in assignment problems, in which tasks are assigned
to agents, and almost always the underlying graph is bipartite, so it is of interest to have
simpler and/or faster algorithms for maximum matchings for the special case in which the
input graph is bipartite.

We will describe a way to rreduce the maximum matching problem in bipartite graphs to
the maximum flow problem, that is, a way to show that a given bipartite graph can be
transformed into a network such that, after finding a maximum flow in the network, we can
easily reconstruct a maximum matching in the original graph.

14.1 Maximum Matching in Bipartite Graphs

Recall that, in an undirected graph G = (V,E), a matching is a subset of edges M ⊆ E
that have no endpoint in common. In a bipartite graph with bipartition (L,R), the edges
of the matching, like all other edges, have one endpoint in L and one endpoint in R.

Consider the following algorithm.
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• Input: undirected bipartite graph G = (V,E), partition of V into sets L,R

• Construct a network (G′ = (V ′, E′), s, t, c) as follows:

– the vertex set is V ′ := V ∪ {s, t}, where s and t are two new vertices;

– E′ contains a directed edge (s, u) for every u ∈ L, a directed edge (u, v)
for every edge (u, v) ∈ E, where u ∈ L and v ∈ R, and a directed edge
(v, t) for every v ∈ R;

– each edge has capacity 1;

• find a maximum flow f(·, ·) in the network, making sure that all flows f(u, v)
are either zero or one

• return M := {(u, v) ∈ E such that f(u, v) = 1}

The running time of the algorithm is the time needed to solve the maximum flow on the
network (G′, s, t, c) plus an extra O(|E|) amount of work to construct the network and to
extract the solution from the flow. In the constructed network, the maximum flow is at
most |V |, and so, using the Ford-Fulkerson algorithm, we have running time O(|E| · |V |).
The fastest algorithm for maximum matching in bipartite graphs, which applies the push-
relabel algorithm to the network, has running time O(|V | ·

√
|E|). It is also possible to

solve the problem in time O(MM(|V |)), where MM(n) is the time that it takes to multiply
two n × n matrices. (This approach does not use flows.) Using the currently best known
matrix multiplication algorithm, the running time is about O(|V |2.37), which is better than
O(|V |

√
|E|) in dense graphs. The algorithm based on push-relabel is always better in

practice.

Remark 14.1 (Integral Flows) It is important in the reduction that we find a flow in
which all flows are either zero or one. In a network in which all capacities are zero or one,
all the algorithms that we have seen in class will find an optimal solution in which all flows
are either zero or one. More generally, on input a network with integer capacities, all the
algorithms that we have seen in class will find a maximum flow in which all f(u, v) are
integers. It is important to keep in mind, however, that, even though in a network with
zero/one capacities there always exists an optimal integral flow, there can also be optimal
flows that are not integral.

We want to show that the algorithm is correct that is that: (1) the algorithm outputs a
matching and (2) that there cannot be any larger matching than the one found by the
algorithm.

Claim 14.2 The algorithm always outputs a matching, whose size is equal to the cost of
the maximal flow of G′.

Proof: Consider the flow f(·, ·) found by the algorithm. For every vertex u ∈ L, the
conservation constraint for u and the capacity constraint on the edge (s, u) imply:
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∑
r:(u,r)∈E

f(u, r) = f(s, u) ≤ 1

and so at most one of the edges of M can be incident on u.

Similarly, for every v ∈ R we have

∑
`:(`,v)∈E

f(`, v) = f(v, t) ≤ 1

and so at most one of the edges in M can be incident on v. �

Remark 14.3 Note that the previous proof does not work if the flow is not integral

Claim 14.4 The size of the largest matching in G is at most the cost of the maximum flow
in G′.

Proof: Let M∗ be a largest matching in G. We can define a feasible flow in G′ in the
following way: for every edge (u, v) ∈ M∗, set f(s, u) = f(u, v) = f(v, t) = 1. Set all the
other flows to zero. We have defined a feasible flow, because every flow is either zero or
one, and it is one only on edges of G′, so the capacity constraints are satisfied, and the
conservation constraints are also satisfied, because for every vertex that is not matched in
M∗ there is zero incoming flow and zero outgoing flow, while for the matched vertices there
is one unit of incoming flow and one unit of outgoing flow. The cost of the flow is the
number of vertices in L that are matched, which is equal to |M∗|.
This means that there exists a feasible flow whose cost is equal to |M∗|, and so the cost of
a maximum flow is greater than or equal to |M∗|. �

So we have established that our algorithm is correct and optimal.

14.2 Perfect Matchings in Bipartite Graphs

A perfect matching is a matching with |V |/2 edges. In a bipartite graph, a perfect matching
can exist only if |L| = |R|, and we can think of it as defining a bijective mapping between
L and R.

For a subset A ⊆ L, let us call N(A) ⊆ R the neighborhood of A, that is, the set of vertices
{r ∈ R : ∃a ∈ A.(a, r) ∈ E} that are connected to vertices in A by an edge in E. Clearly,
if there is a perfect matching in a bipartite graph G = (V,E) with bipartition (L,R), then
we must have |A| ≤ |N(A)|, because the edges of the perfect matching match each vertex
in A to a distinct vertex in N(A), and this is impossible if |N(A)| < |A|.
A classical result in graph theory, Hall’s Theorem, is that this is the only case in which a
perfect matching does not exist.
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Theorem 14.5 (Hall) A bipartite graph G = (V,E) with bipartition (L,R) such that |L| =
|R| has a perfect matching if and only if for every A ⊆ L we have |A| ≤ |N(A)|.

The theorem precedes the theory of flows and cuts in network, and the original proof was
constructive and a bit complicated. We can get a very simple non-constructive proof from
the max flow - min cut theorem.

Proof: We have already seen one direction of the theorem. It remains to prove that if
|A| ≤ |N(A)| for every A ⊆ L, then G has a perfect matching.

Equivalently, we will prove that if G does not have a perfect matching, then there must be
a set A ⊆ V such that |A| > |N(A)|.
Let us construct the network (G′, s, t, c) as in the algorithm above, an let us call n = |L| =
|R|. If G does not have a perfect matching, then it means that the size of the maximum
matching in G is ≤ n− 1, and so the size of the maximum flow in G′ is ≤ n− 1, and so G′

must have a cut of capacity ≤ n− 1. Let us call the cut S.

Let us call L1 := S ∩ L the left vertices in S, and L2 := L− S the remaining left vertices,
and similarly R1 := S ∩R and R2 := R− S.

In the network G′, all edges have capacity one, so the capacity of the cut S is the number
of edges that go from S to the complement of S, that is

capacity(S) = |L2|+ |R1|+ edges(L1, R2)

where |L2| is the number of edges from s to the complement of S, |R1| is the number of
edges from S into t, and edges(L1, R2) is the number of edges in E with one endpoint in
L1 and one endpoint in R2.

This means that we have

n− 1 ≥ |L2|+ |R1|+ edges(L1, R2)

and, recalling that |L1| = n− |L2|,

|L1| ≥ |R1|+ edges(L1, R2) + 1

We can also see that

|N(L1)| ≤ |R1|+ edges(L1, R2)

because the neighborhood of L1 can at most include edges(L1, R2) vertices in R2. Overall,
we have

|L1| ≥ N(L1) + 1

and so we have found a set on the left that is bigger than its neighborhood. �
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14.3 Vertex Cover in Bipartite Graphs

The work that we have done on matching in bipartite graphs also gives us a very simple
polynomial time algorithm for vertex cover.

• Input: undirected bipartite graph G = (V,E), partition of V into sets L,R

• Construct a network (G′ = (V ′, E′), s, t, c) as before

• Find a minimum-capacity cut S in the network

• Define L1 := L ∩ S, L2 := L− S, R1 := R ∩ S, R2 := R− S

• Let B be the set of vertices in R2 that have neighbors in L1

• C := L2 ∪R1 ∪B

• output C

We want to show that the algorithm outputs a vertex cover, and that the size of the output
set C is indeed the size of the minimum vertex cover.

Claim 14.6 The output C of the algorithm is a vertex cover

Proof: The set C covers all edges that have an endpoint either in L2 or R1, because C
includes all of L2 and all or R1. Regarding the remaining edges, that is, those that have
endpoint in L1 and the other endpoint in R2, all such edges are covered by B. �

Claim 14.7 There is no vertex cover of size smaller than |C|.

Proof: Let k be the capacity of the cut. Then k is equal to

|L2|+ |R1|+ edges(L1, R2)

and so

k ≥ |L2|+ |R1|+ |B| = |C|

but k is equal to the capacity of the minimum cut in G′, which is equal to the cost of the
maximum flow in G′ which, by what we proved in the previous section, is equal to the size
of the maximum matching in G. This means that G has a matching of size k, and so every
vertex cover must have size ≥ k ≥ |C|. �



Lecture 15

The Linear Program of Max Flow

In which we look at the linear programming formulation of the maximum flow problem,
construct its dual, and find a randomized-rounding proof of the max flow - min cut theorem.

In the first part of the course, we designed approximation algorithms “by hand,” following
our combinatorial intuition about the problems. Then we looked at linear programming
relaxations of the problems we worked on, and we saw that approximation algorithms for
those problems could also be derived by rounding a linear programming solution. We also
saw that our algorithms could be interpreted as constructing, at the same time, an integral
primal solution and a feasible solution for the dual problem.

Now that we have developed exact combinatorial algorithms for a few problems (maximum
flow, minimum s-t cut, global min cut, maximum matching and minimum vertex cover in
bipartite graphs), we are going to look at linear programming relaxations of those problems,
and use them to gain a deeper understanding of the problems and of our algorithms.

We start with the maximum flow and the minimum cut problems.

15.1 The LP of Maximum Flow and Its Dual

Given a network (G = (V,E), s, t, c), the problem of finding the maximum flow in the
network can be formulated as a linear program by simply writing down the definition of
feasible flow.
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We have one variable f(u, v) for every edge (u, v) ∈ E of the network, and the problem is:

maximize
∑

v:(s,v)∈E

f(s, v)

subject to ∑
u:(u,v)∈E

f(u, v) =
∑

w:(v,w)∈E

f(v, w) ∀v ∈ V − {s, t}

f(u, v) ≤ c(u, v) ∀(u, v) ∈ E
f(u, v) ≥ 0 ∀(u, v) ∈ E

(15.1)

Now we want to construct the dual.

When constructing the dual of a linear program, it is often useful to rewrite it in a way
that has a simpler structure, especially if it is possible to rewrite it in a way that has fewer
constraints (which will correspond to fewer dual variables), even at the cost of introducing
several new variables in the primal.

A very clean way of formulating the maximum flow problem is to think in terms of the
paths along which we are going to send the flow, rather than in terms of how much flow is
passing through a specific edge, and this point of view makes the conservation constraints
unnecessary.

In the following formulation, we have one variable xp for each of the possible simple paths
from s to t (we denote by P the set of such paths), specifying how much of the flow from s
to t is being routed along the path p:

maximize
∑
p∈P

xp

subject to ∑
p∈P :(u,v)∈p

xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ P

(15.2)

Note that, usually, a network has exponentially many possible paths from s to t, and so the
linear program (15.2) has an exponential number of variables. This is ok because we are
never going to write down (15.2) for a specific network and pass it to a linear programming
solver; we are interested in (15.2) as a mathematical specification of the maximum flow
problem. If we want to actually find a maximum flow via linear programming, we will use
the equivalent formulation (15.1).

(There are several other cases in combinatorial optimization in which a problem has a easier-
to-understand linear programming relaxation or formulation that is exponentially big, and
one can prove that it is equivalent to another relaxation or formulation of polynomial size.
One then proves theorems about the big linear program, and the theorems apply to the
small linear program as well, because of the equivalence. Then the small linear program
can be efficiently solved, and the theorems about the big linear program can be turned into
efficient algorithms.)
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Let us first confirm that indeed (15.1) and (15.2) are equivalent.

Fact 15.1 If f(·, ·) is a feasible solution for (15.1), then there is a feasible solution for
(15.2) of the same cost.

Proof: Note that this is exactly the Flow Decomposition Theorem that we proved in
Lecture 11, in which it is stated as Lemma 2. �

Fact 15.2 If {xp}p∈P is a feasible solution for (15.2), then there is a feasible solution for
(15.1) of the same cost.

Proof: Define

f(u, v) :=
∑

p∈P :(u,v)∈p

xp

that is, let f(u, v) the sum of the flows of all the paths that use the edge (u, v). Then f(·, ·)
satisfies the capacity constraints and, regarding the conservation constraints, we have

∑
u:(u,v)∈E

f(u, v) =
∑

p∈P :v∈p
xp =

∑
w:(v,w)∈E

f(u, v)

�

Let us now construct the dual of (15.2). We have one dual variable yu,v for every edge
(u, v) ∈ E, and the linear program is:

minimize
∑

(u,v)∈E

c(u, v)yu,v

subject to ∑
(u,v)∈p

yu,v ≥ 1 ∀p ∈ P

yu,v ≥ 0 ∀(u, v) ∈ E

(15.3)

The linear program (15.3) is assigning a weight to each edges, which we may think of as a
“length,” and the constraints are specifying that, along each possible path, s and t are at
distance at least one. This means that dual variables are expressing a way of “separating”
s from t and, after thinking about it for a moment, we see that (15.3) can be seen as a
linear programming relaxation of the minimum cut problem.

Fact 15.3 For every feasible cut A in the network (G, s, t, c), there is a feasible solution
{yu,v}(u,v)∈E to (15.3) whose cost is the same as the capacity of A.
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Proof: Define yu,v = 1 if u ∈ A and v 6∈ A, and let yu,v = 0 otherwise. Then

∑
u,v

c(u, v)yu,v =
∑

u∈A,v 6∈A
c(u, v) = capacity(A)

�

This means that the optimum of (15.3) is smaller than or equal to the capacity of the
minimum cut in the network. Now we are going to describe a randomized rounding method
that shows that the optimum of (15.3) is actually equal to the capacity of the minimum
cut. Since the optimum of (15.3) is equal to the optimum of (15.2) by the Strong Duality
Theorem, and we have proved that the optimum of (15.3) is equal to the cost of the
maximum flow of the network, Lemma 15.4 below will prove that the cost of the maximum
flow in the network is equal to the capacity of the minimum flow, that is, it will be a different
proof of the max flow - min cut theorem. It is actually a more difficult proof (because it
uses the Strong Duality Theorem whose proof, which we have skipped, is not easy), but it
is a genuinely different one, and a useful one to understand, because it gives an example of
how to use randomized rounding to solve a problem optimally. (So far, we have only seen
examples of the use of randomized rounding to design approximate algorithms.)

Lemma 15.4 Given any feasible solution {yu,v}(u,v)∈E to (15.3), it is possible to find a cut
A such that

capacity(A) ≤
∑
u,v

c(u, v)yu,v

Proof: Interpret the yu,v as weights on the edges, and use Dijkstra’s algorithm to find, for
every vertex v, the distance d(v) from s to v according to the weights yu,v.

The constraints in (15.3) imply that d(t) ≥ 1.

Pick a value T uniformly at random in the interval [0, 1), and let A be the set

A := {v : d(v) ≤ T}

Then, for every choice of T , A contains s and does not contain t, and so it is a feasible cut.

Using linearity of expectation, the average (over the choice of T ) capacity of A can be
written as

E
T∼[0,1)

capacity(A) =
∑

(u,v)∈E

c(u, v) P[u ∈ A ∧ v 6∈ A]

and

P[u ∈ A ∧ v 6∈ A] = P[d(u) ≤ T < d(v)] = d(v)− d(u)

Finally, we observe the “triangle inequality”
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d(v) ≤ d(u) + yu,v

which says that the shortest path from s to v is at most the length of the shortest path
from s to u plus the length of the edge (u, v).

Putting all together, we have

E
T∼[0,1)

capacity(A) ≤
∑

(u,v)∈E

c(u, v)yu,v

and there clearly must exist a choice of T for which the capacity of A is at most the expected
capacity.

About finding A efficiently, we can also note that, although there is an infinite number of
choices for T , there are only at most |V |− 1 different cuts that can be generated. If we sort
the vertices in increasing order of d(v), and let them be u1, . . . , u|V | in this order, then we
have s = u1, and let k be such that d(uk) < 1 but d(uk+1) ≥ 1. Then the only cuts which
are generated in our probability distribution are the k cuts of the form

Ai := {s = u1, u2, . . . , ui}

for i = 1, . . . , k, and one of them must have capacity≤
∑

(u,v)∈E yu,vc(u, v). We can compute
the capacity of each Ai and pick the Ai with the smallest capacity. �

Let us now see what the dual of (15.1) looks like. It will look somewhat more mysterious
than (15.3), but now we know what to expect: because of the equivalence between (15.1) and
(15.2), the dual of (15.1) will have to be a linear programming relaxation of the minimum
cut problem, and it will have an exact randomized rounding procedure.

The dual of (15.1) has one variable for each vertex v (except s and t), which we shall call
yv, corresponding to the conservation constraints, and one variable for each edge, which we
shall call yu,v, corresponding to the capacity constraints.

minimize
∑

(u,v)∈E

c(u, v)yu,v

subject to
yv + ys,v ≥ 1 ∀v : (s, v) ∈ E
yv − yu + yu,v ≥ 0 ∀(u, v) ∈ E, u 6= s, v 6= t
−yu + yu,t ≥ 0 ∀u : (u, t) ∈ E

(15.4)

Let us see that (15.4) is a linear programming relaxation of the minimum cut problem and
that it admits an exact rounding algorithm.

Fact 15.5 If A is a feasible cut in the network, then there is a feasible solution to (15.4)
such that
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capacity(A) =
∑

(u,v)∈E

c(u, v)yu,v

Proof: Define yv = 1 if v ∈ A, and yv = 0 if v 6∈ A. Define yu,v = 1 if u ∈ A and v 6∈ A,
and yu,v = 0 otherwise.

To see that it is a feasible solution, let us first consider the constraints of the first kind.
They are always satisfied because if v ∈ A then yv = 1, and if v 6∈ A then (s, v) crosses the
cut and ys,v = 1, so the left-hand-side is always at least one. We can similarly see that the
constraints of the third type are satisfied.

Regarding the constraints of the second kind, we can do a case analysis and see that the
constraint is valid if yu = 0 (regardless of the value of the other variables), and it is also
valid if yv = 1 (regardless of the value of the other variables). The remaining case is yu = 1
and yv = 0, which is the case in which (u, v) crosses the cut and so yu,v = 1. �

Fact 15.6 Given a feasible solution of (15.4), we can find a feasible cut whose capacity is
equal to the cost of the solution.

Proof: Pick uniformly at random T in [0, 1], then define

A := {s} ∪ {v : yv ≥ T}

This is always a cut, because, by construction, it contains s and it does not contain t.
(Recall that there is no variable yt because there is no conservation constraint for t.)

Then we have
E capacity(A) =

∑
u,v

c(u, v) P[u ∈ A ∧ v 6∈ A]

It remains to argue that, for every edge (u, v), we have

P[u ∈ A ∧ v 6∈ A] ≤ yu,v
For edges of the form (s, v), we have

P[s ∈ A ∧ v 6∈ A] = P[v 6∈ A] = P[yv < T ≤ 1] = 1− yv ≤ ys,v

(Actually, the above formula applies if 0 ≤ yv < 1. If yv ≥ 1, then the probability is zero
and ys,v ≥ 0 and we are fine; if yv < 0, then the probability is one, and ys,v ≥ 1 − yv > 1,
so we are again fine.)

For edges of the form (u, v) in which u and v are in V − {s, t} we have

P[u ∈ A ∧ v 6∈ A] = P[yv < T ≤ yu] = yu − yv ≤ yu,v

(Again, we have to look out for various exceptional cases, such as the case yv ≥ yu, in which
case the probability is zero and yu,v ≥ 0, and the case yv < 0, and the case yu > 1.)
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For edges of the form (v, t), we have

P[v ∈ A ∧ t 6∈ A] = P[v ∈ A] = P[yv ≥ T ] = yv ≤ yv,t

(Same disclaimers.) �
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Lecture 16

Multicommodity Flow

In which we define a multi-commodity flow problem, and we see that its dual is the relax-
ation of a useful graph partitioning problem. The relaxation can be rounded to yield an
approximate graph partitioning algorithm.

16.1 Generalizations of the Maximum Flow Problem

An advantage of writing the maximum flow problem as a linear program, as we did in the
past lecture, is that we can consider variations of the maximum flow problem in which we
add extra constraints on the flow and, as long as the extra constraints are linear, we are
guaranteed that we still have a polynomial time solvable problem. (Because we can still
write the problem as a linear program, and we can solve linear programming in polynomial
time.)

Certain variants of maximum flow are also easily reducible to the standard maximum flow
problem, and so they are solvable using the combinatorial algorithms that we have discussed.

Example 16.1 (Vertex Capacities) An interesting variant of the maximum flow prob-
lem is the one in which, in addition to having a capacity c(u, v) for every edge, we also
have a capacity c(u) for every vertex, and a flow f(·, ·) is feasible only if, in addition to
the conservation constraints and the edge capacity constraints, it also satisfies the vertex
capacity constraints

∑
u:(u,v)∈E

f(u, v) ≤ c(v) ∀v ∈ V

It is easy to see that the problem can be reduced to the standard maximum flow problem, by
splitting every vertex v into two vertices vin and vout, adding one edge (vin, vout) of capacity
c(v), and then converting every edge (u, v) to an edge (u, vin) and every edge (v, w) to an
edge (vout, w). It is easy to show that solving the (standard) maximum flow problem on the
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new network is equivalent to solving the maximum flow with vertex capacity constraints in
the original network.

Example 16.2 (Multiple Sources and Sinks and “Sum” Cost Function) Several im-
portant variants of the maximum flow problems involve multiple source-sink pairs (s1, t1), . . . , (sk, tk),
rather than just one source and one sink. Assuming that the “stuff” that the sources want
to send to the sinks is of the same type, the problem is to find multiple feasible flows f1(·, ·),
. . ., fk(·, ·), where f i(·, ·) is a feasible flow from the source si to the sink ti, and such that
the capacity constraints

k∑
i=1

f i(u, v) ≤ c(u, v) ∀(u, v) ∈ E

are satisfied. Such a flow is called a “multi-commodity” flow.

How do we measure how “good” is a multicommodity flow? A simple measure is to consider
the sum of the costs

k∑
i=1

∑
v

f i(si, v)

In such a case, we can do a reduction to the standard maximum flow problem by adding
a “super-source” node s, connected with edges of infinite capacity to the sources si, and a
“super-sink” node t, to which all sinks ti are connected to, via infinite capacity edges. It is
easy to see that the maximum flow from s to t is the same as the maximum sum of flows
in a feasible multicommodity flow in the original network.

In many applications, looking at the sum of the costs of the various flows f i(·, ·) is not a
“fair” measure. For example, if the underlying network is a communication network, and
(s1, t1), (s2, t2) are pairs of nodes that need to communicate, a solution that provides 5Mb/s
of bandwidth between s1 and t1 and no bandwidth between s2 and t2 is not a very good
solution compared, for example, with a solution that provides 2Mb/s of bandwidth each
between s1 and t1 and between s2 and t2. (Especially so from the point of view of s2 and
t2.) There are various reasonable measures of the quality of a multicommodity flow which
are more fair, for example we may be interested in maximizing the median flow, or the
minimum flow. A rather general problem, which can be used to find multicommodity flows
maximizing various cost measures is the following.

Definition 16.3 (Multicommodity Feasibility Problem) Given in input a network G =
(V,EG) with capacities c(u, v) for each (u, v) ∈ EG, and given a collection of (not neces-
sarily disjoint) pairs (s1, t1), . . ., (sk, tk), each having a demand d(si, ti), find a feasible
multicommodity flow f1(·, ·), . . . , fk(·, ·) such that

∑
v

f i(si, v) ≥ d(si, ti) ∀i = 1, . . . , k
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or determine that no such multicommodity flow exists.

A more general version, which is defined as an optimization problem, is as follows.

Definition 16.4 (Maximizing Fractional Demands) Given in input a network G =
(V,EG) with capacities c(u, v) for each (u, v) ∈ EG, and given a collection of (not neces-
sarily disjoint) pairs (s1, t1), . . ., (sk, tk), each having a demand d(si, ti), find a feasible
multicommodity flow f1(·, ·), . . . , fk(·, ·) such that

∑
v

f i(si, v) ≥ y · d(si, ti) ∀i = 1, . . . , k

and such that y is maximized.

Note that the vertices s1, . . . , sk, t1, . . . , tk need not be distinct. For example, in the case of
a communication network, we could have a broadcast problem in which a node s wants to
send data to all other nodes, in which case the source-sink pairs are all of the form (s, v)
for v ∈ V − {s}. It is useful to think of the pairs of vertices that require communication as
defining a weighted graph, with the weights given by the demands. We will call H = (V,EH)
the graph of demands. (In the broadcast example, H would be a star graph.)

The Fractional Multicommodity Flow Problem can be easily formulated as a linear program.

maximize y
subject to ∑

u

f s,t(u, v) =
∑
w

fs,t(v, w) ∀(s, t) ∈ EH∀v ∈ V − {s, t}∑
(s,t)∈EH

fs,t(u, v) ≤ c(u, v) ∀(u, v) ∈ EG∑
v

f s,t(s, v) ≥ y · d(s, t) ∀(s, t) ∈ EH

fs,t(u, v) ≥ 0 ∀(s, t) ∈ EH , (u, v) ∈ EG

(16.1)

As for the standard maximum flow problem, it is also possible to give a formulation that
involves an exponential number of variables, but for which it is easier to derive the dual.

In the following formulation, Ps,t is the set of all paths from s to t in G, and we have a
variable xp for each path in Ps,t, for each (s, t) ∈ EH , corresponding to how many units of
flow from s to t are routed through the path p.

maximize y
subject to ∑

p∈Ps,t

xp ≥ y · d(s, t) ∀(s, t) ∈ EH∑
p:(u,v)∈p

xp ≤ c(u, v) ∀(u, v) ∈ EG

xp ≥ 0 ∀p
y ≥ 0

(16.2)
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Note that if EH contains only one edge (s, t), and d(s, t) = 1, then we have the standard
maximum flow problem.

16.2 The Dual of the Fractional Multicommodity Flow Prob-
lem

The dual of (16.2) has one variable w(s, t) for each (s, t) ∈ EH , and a one variable z(u, v)
for each (u, v) ∈ EG. It is as follows:

minimize
∑

u,v z(u, v)c(u, v)
subject to ∑

(s,t)∈EH

w(s, t)d(s, t) ≥ 1

−w(s, t) +
∑

(u,v)∈p

z(u, v) ≥ 0 ∀(s, t) ∈ EH , p ∈ Ps,t

w(s, t) ≥ 0 ∀(s, t) ∈ EH
z(u, v) ≥ 0 ∀(u, v) ∈ EG

(16.3)

Thinking a bit about (16.3) makes us realize that, in an optimal solution, without loss of
generality w(s, t) is be the shortest path from s to t in the graph weighted by the z(u, v).
Indeed, the constraints force w(s, t) to be at most the length of the shortest z(·, ·)-weighted
path from s to t, and, if some w(s, t) is strictly smaller than the length of the shortest path,
we can make it equal to the length of the shortest path without sacrificing feasibility and
without changing the cost of the solution. The other observation is that, in an optimal
solution, we have

∑
w(s, t)d(s, t) = 1, because, in a solution in which

∑
w(s, t)d(s, t) = c >

1, we can divide all the w(s, t) and all the z(u, v) by c, and obtain a solution that is still
feasible and has smaller cost. This means that the following linear program is equivalent to
(16.3). We have a variable `(x, y) for every pair of vertices in EG ∪ EH :

minimize
∑

u,v `(u, v)c(u, v)
subject to ∑

(s,t)∈EH

`(s, t)d(s, t) = 1∑
(u,v)∈p

`(u, v) ≥ `(s, t) ∀(s, t) ∈ EH , p ∈ Ps,t

`(u, v) ≥ 0 ∀(u, v) ∈ EG ∪ EH

(16.4)

16.3 The Sparsest Cut Problem

From now on, we restrict ourselves to the case in which the graphs EG and EH are undi-
rected. In such a case, we have a variable `(u, v) for each unordered pair u, v. The constraints∑

(u,v)∈p `(u, v) ≥ `(s, t) can be equivalently restated as the triangle inequalities
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`(u1, u3) ≤ `(u1, u2) + `(u2, u3)

This means that we are requiring `(u, v) to be non-negative, symmetric and to satisfy the
triangle inequality, and so it is a metric over V . (Technically, it is a semimetric because we
can have distinct vertices at distance zero, and `(·, ·) is not defined for all pairs, but only for
pairs in EG ∪ EH , although we could extend it to all pairs by computing all-pairs shortest
paths based on the weights `(x, y) for (x, y) ∈ EG ∪ EH .)

These observations give us one more alternative formulation:

min
`(·,·) metric

∑
(u,v)∈EG

c(u, v) · `(u, v)∑
(s,t)∈EH

d(s, t) · `(s, t)

Now, finally, we can see that the above formulation is the linear programming relaxation of
a cut problem.

If A ⊆ V is a subset of vertices, we say that a pair (u, v) is cut by A if u ∈ A and v 6∈ A, or
vice versa.

Given an instance of the multicommodity flow problem, we say that a subset A of vertices
is a cut if it cuts at least one of the pairs in EH . The sparsest cut (also called quotient cut)
problem is to find a cut A that minimizes the ratio

∑
(u,v)∈EG cut by A

c(u, v)

∑
(s,t)∈EH cut by A

d(s, t)

which is called the sparsity of the cut A.

Note that, if EH contains only one pair (s, t), and d(s, t) = 1, then we have exactly the
standard minimum cut problem.

Suppose that, in our multicommodity problem, there is a fractional flow of cost y. Then,
for each pair (s, t) that is cut by A, the yd(s, t) units of flow from s to t must pass through
edges of EG that are also cut by A. Overall,

∑
(s,t)cut by A yd(s, t) units of flow must pass

through those edges, whose overall capacity is at most
∑

(u,v)cut by A c(u, v), so we must
have ∑

(u,v)cut by A

c(u, v) ≥ y
∑

(s,t)cut by A

d(s, t)

which means that the sparsity of A must be at least y. This means that sparsity of every
cut is at least the fractional cost of any flow. (This is not surprising because we derived the
sparsest cut problem from the dual of the flow problem, but there is a very simple direct
reason why the above bound holds.)

Now it would be very nice if we had an exact rounding algorithm to find the optimum of
the sparsest cut problem.
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For a given graph G = (V,EG) with capacities c(u, v), if we define EH to be a clique and
d(s, t) = 1 for all s, t, then solving the sparsest cut problem on G and H becomes the
problem of finding a set A that minimizes

∑
(u,v)∈EG cut by A

c(u, v)

|A| · |V −A|

and optimizing such a cost function tends to favor finding sets A that are large and that
have few edges coming out. This is useful in a number of contexts. In clustering problems, if
the capacities represent similarity, a sparsest cut algorithm will pick out sets of vertices that
are mostly similar to each other, but dissimilar to the other vertices, that is, a cluster. Very
effective image segmentation algorithms are based on applying sparsest cut approximation
algorithms (but not the one we are describing in these notes, which is too slow) to graphs
in which there is a vertex for every pixel, and edges connect nearby pixels with a capacity
corresponding to how likely the pixels are to belong to same object in the image.

Unfortunately, the sparsest cut problem is NP-hard. Rounding (16.4), however, it is possible
to achieve a O(log |EH |)-factor approximation.

We very briefly describe what the approximation algorithm looks like.

First, we need the following result:

Lemma 16.5 For every input G,H, c, d, and every feasible solution `(·, ·) of (16.4), it is
possible to find in polynomial time a subset S of vertices, such that if we define

gS(v) := min
a∈S

`(a, v)

then we have ∑
(s,t)∈EH

`(s, t)d(s, t) ≤ O(log |EH |)
∑

(s,t)∈EH

|gS(s)− gS(t)|d(s, t)

The proof is rather complicated, and we will skip it.

Then we have the following fact:

Lemma 16.6 For every input G,H, c, d, every feasible solution `(·, ·) of (16.4), and every
subset S of vertices, if we define gS(v) := mina∈S `(a, v), we have

∑
(u,v)∈EG

`(u, v)c(u, v) ≥
∑

(u,v)∈EG

|gS(u)− gS(v)|c(u, v)

Proof: It is enough to show that we have, for every u, v,

`(u, v) ≥ |gS(u)− gS(v)|
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Let a be the vertex such that `(a, u) = gS(u) and b be the vertex such that `(b, v) = gS(v).
(They need not be different.) Then, from the triangle inequality, we get

`(u, v) ≥ `(u, b)− `(b, v) ≥ `(u, a)− `(b, v) = gS(u)− gS(v)

and
`(u, v) ≥ `(v, a)− `(a, u) ≥ `(v, b)− `(u, a) = gS(v)− gS(a)

and so
`(u, v) ≥ |gS(u)− gS(v)|

�

Lemma 16.7 For every input G,H, c, d, and every function g : V → R, we can find in
polynomial time a cut A such that

∑
(u,v)∈EG cut by A

c(u, v)

∑
(s,t)∈EH cut by A

d(s, t)
≤
∑

(u,v)∈EG
|g(u)− g(v)|c(u, v)∑

(s,t)∈EH
|g(s)− g(t)|d(s, t)

Proof: We sort the vertices in ascending value of g, so that we have an ordering u1, . . . , un
of the vertices such that

g(u1) ≤ g(u2) ≤ · · · ≤ g(un)

We are going to consider all the cuts of the form A := {u1, . . . , uk}, and we will show that
at least one of them has sparsity at most

r :=

∑
(u,v)∈EG

|g(u)− g(v)|c(u, v)∑
(s,t)∈EH

|g(s)− g(t)|d(s, t)

Since r does not change if we scale g(·) by a multiplicative constant, we will assume without
loss of generality that g(un)− g(u1) = 1.

Let us pick a threshold T uniformly at random in the interval [g(u1), g(un)], and define the
set A := {u : g(u) ≤ T}. Now note that, for every pair of vertices x, y, the probability that
(x, y) is cut by A is precisely |g(x)− g(y)|, and so

E
∑

(u,v)∈EG cut by A

c(u, v) =
∑

(u,v)∈EG

|g(u)− g(v)|c(u, v)

and
E

∑
(s,t)∈EH cut by A

d(s, t) =
∑

(s,t)∈EH

|g(s)− g(t)|d(s, t)
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so that
E

∑
(u,v)∈EG cut by A

c(u, v)− r
∑

(s,t)∈EH cut by A

d(s, t) = 0

and so there must exist an A in our sample space (which consists of sets of the form
{u1, . . . , uk}) such that

∑
(u,v)∈EG cut by A

c(u, v)− r
∑

(s,t)∈EH cut by A

d(s, t) ≥ 0

that is, ∑
(u,v)∈EG cut by A

c(u, v)

∑
(s,t)∈EH cut by A

d(s, t)
≤ r

�

This is enough to have an O(log |EH |)-approximate algorithm for the sparsest cut problem.

On input the graphs G,H, the capacities c(·, ·) and the demands d(·, ·), we solve the linear
program (16.4), and find an optimal solution `(·, ·) of cost optlp. Then we use Lemma 16.5
to find a set S such that, if we define gS(v) := mina∈S `(a, v), we have (using also Lemma
16.6) ∑

(u,v)∈EG
|g(u)− g(v)|c(u, v)∑

(s,t)∈EH
|g(s)− g(t)|d(s, t)

≤ optlp ·O(log |EH |)

Finally, we use the algorithm of Lemma 16.7 to find a cut A whose sparsity is at most
optlp ·O(log |EH |), which is at most O(log |EH |) times the sparsity of the optimal cut. This
proves the main result of this lecture.

Theorem 16.8 There is a polynomial time O(log |EH |)-approximate algorithm for the spars-
est cut problem.



Lecture 17

Online Algorithms

In which we introduce online algorithms and discuss the buy-vs-rent problem, the secretary
problem, and caching.

In this lecture and the next we will look at various examples of algorithms that operate under
partial information. The input to these algorithms is provided as a “stream,” and, at each
point in time, the algorithms need to make certain decisions, based on the part of the input
that they have seen so far, but without knowing the rest of the input. If we knew that the
input was coming from a simple distribution, then we could “learn” the distribution based
on an initial segment of the input, and then proceed based on a probabilistic prediction of
what the rest of the input is going to be like. In our analysis, instead, we will mostly take a
worst-case point of view in which, at any point in time, the unknown part of the input could
be anything. Interestingly, however, algorithms that are motivated by “learn and predict”
heuristics often work well also from the point of view of worst-case analysis.

17.1 Online Algorithms and Competitive Analysis

We will look at online algorithms for optimization problems, and we will study them from
the point of view of competitive analysis. The competitive ratio of an online algorithm for
an optimization problem is simply the approximation ratio achieved by the algorithm, that
is, the worst-case ratio between the cost of the solution found by the algorithm and the cost
of an optimal solution.

Let us consider a concrete example: we decide to go skiing in Tahoe for the first time.
Buying the equipment costs about $500 and renting it for a weekend costs $50. Should we
buy or rent? Clearly it depends on how many more times we are going to go skiing in the
future. If we will go skiing a total of 11 times or more, then it is better to buy, and to
do it now. If we will go 9 times or fewer, then it is better to rent, and if we go 10 times
it does not matter. What is an “online algorithm” in this case? Each time we want to go
skiing, unless we have bought equipment a previous time, we have to decide whether we
are going to buy or rent. After we buy, there is no more decision to make; at any time, the
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only “input” for the algorithm is the fact that this is the k-th time we are going skiing, and
that we have been renting so far; the algorithm decides whether to buy or rent based on k.
For deterministic algorithms, an algorithm is completely described by the time t at which
it decides that it is time to buy.

What are the competitive ratios of the possible choices of t? If t = 1, that is if we buy before
the first time we go skiing, then the competitive ratio is 10, because we always spend $500,
and if it so happens that we never go skiing again after the first time, then the optimum is
$50. If t = 2, then the competitive ratio is 5.5, because if we go skiing twice then we rent
the first time and buy the second, spending a total of $550, but the optimum is $100. In
general, for every t ≤ 10, the competitive ratio is

500 + 50(t− 1)
50t

= 1 +
9
t

If t ≥ 10, then the competitive ratio is

500 + 50(t− 1)
500

= .9 +
t

10

So the best choice of t is t = 10, which gives the competitive ratio 1.9.

The general rule for buy-versus-rent problems is to keep renting until what we have spent
renting equals the cost of buying. After that, we buy.

(The “predicting” perspective is that if we have gone skiing 10 times already, it makes sense
to expect that we will keep going at least 10 more times in the future, which justifies buying
the equipment. We are doing worst-case analysis, and so it might instead be that we stop
going skiing right after we buy the equipment. But since we have already gone 10 times,
the prediction that we are going to go a total of at least 20 times is correct within a factor
of two.)

17.2 The Secretary Problem

Suppose we have joined an online dating site, and that there are n people that we are rather
interested in. We would like to end up dating the best one. (We are assuming that people
are comparable, and that there is a consistent way, after meeting two people, to decide
which one is better.) We could go out with all of them, one after the other, and then pick
the best, but our traditional values are such that if we are dating someone, we are not
going to go out with anybody else unless we first break up. Under the rather presumptuous
assumption that everybody wants to date us, and that the only issue is who we are going to
choose, how can we maximize the probability of ending up dating the best person? We are
going to pick a random order of the n people, and go out, one after the other, with the first
n/e people. In these first n/e dates, we just waste other people’s time: no matter how the
dates go, we tell them that it’s not them, it’s us, that we need some space and so on, and
we move on to the next. The purpose of this first “phase” is to calibrate our expectations.
After these n/e dates, we continue to go out on more dates following the random order,
but as soon as we found someone who is better than everybody we have seen so far, that’s
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the one we are going to pick. We will show that this strategy picks the best person with
probability about1/e, which is about 37%.

How does one prove such a statement? Suppose that our strategy is to reject the people we
meet in the first t dates, and then from date t+ 1 on we pick the first person that is better
than all the others so far. The above algorithm corresponds to the choice t = n/e.

Let us identify our n suitors with the integers 1, . . . , n, with the meaning that 1 is the
best, 2 is the second best, and so on. After we randomly permute the order of the people,
we have a random permutation π of the integers 1, . . . , n. The process described above
corresponds to finding the minimum of π[1], . . . , π[t], where t = n/e, and then finding the
first j ≥ t + 1 such that π[j] is smaller than the minimum of π[1], . . . , π[t]. We want to
compute the probability that π[j] = 1. We can write this probability as

n∑
j=t+1

P[π[j] = 1 and we pick the person of the j-th date ]

Now, suppose that, for some j > t, π[j] = 1. When does it happen that we do not end up
with the best person? We fail to get the best person if, between the (t + 1)-th date and
the (j − 1)-th date we meet someone who is better than the people met in the first t dates,
and so we pick that person instead of the best person. For this to happen, the minimum
of π[1], . . . , π[j − 1] has to occur in locations between t+ 1 and j − 1. Equivalently, we do
pick the best person if the best among the first j − 1 people happen to be one of the first t
people.

We can rewrite the probability of picking the best person as

n∑
j=t+1

P[π[j] = 1 and min of π[1], . . . , π[j − 1] is in π[1], . . . , π[t]]

=
n∑

j=t+1

1
n
· t

j − 1

To see that the above equation is right, P[π[j] = 1] = 1/n because, in a random permutation,
1 is equally likely to be the output of any of n possible inputs. Conditioned on π[j] = 1, the
minimum of π[1], . . . , π[j−1] is equally likely to occur in any of the j−1 places, and so there
is a probability t/(j−1) that it occurs in one of the first t locations. (Some readers may find
this claim suspicious; it can be confirmed by explicitly counting how many permutations
are such that π[j] = 1 and π[i] = min{π[1], . . . , π[j − 1]}, and to verify that for each j > t
and each i ≤ t the number of these permutations is exactly (n− 1)!/(j − 1).)

So the probability of picking the best person is

t

n

n∑
j=t+1

1
j − 1

=
t

n

n−1∑
j=1

1
j
−

t∑
j=1

i

j

 ≈ t

n
· (lnn− ln t) =

t

n
ln
n

t
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And the last expression is optimized by t = n/e, in which case the expression is 1/e.

Note that this problem was not in the “competitive analysis” framework, that is, we were
not trying to find an approximate solution, but rather to find the optimal solution with
high probability.

Note also that, with probability 1/e, the algorithm causes us to pick nobody, because the
best person is one of the first n/e with probability 1/e, and when this happens we set our
standards so high that we are ending up alone.

Suppose instead that we always want to end up with someone, and that we want to optimize
the “rank” of the person we pick, that is, the place in which it fits in our ranking from 1 to
n. If we apply the above algorithm, with the modification that we pick the last person if we
have gotten that far, then with probability 1/e we pick the last person which, on average,
has rank n/2, so the average rank of the person we pick is Ω(n). (This is not a rigorous
argument, but it is close to the argument that establishes rigorously that the average is
Ω(n).)

In general, any algorithm that is based on rejecting the first t people, and then picking the
first subsequent one which is better than the first t, or the last one if we have gotten that
far, picks a person of average rank Ω(

√
n).

Quite surprisingly, there is an algorithm that picks a person of average rank O(1), and which
is then competitive for the optimization problem of minimizing the rank. The algorithm
is rather complicated, and it is based on first computing a series of timesteps t0 ≤ t1 ≤
. . . ≤ tk ≤ . . . according to a rather complicated formula, and then proceed as follows: we
reject the first t0 people, then if we find someone in the first t1 dates which is better than
all the previous people, we pick that person. Otherwise, between the (t1 + 1)-th and the
t2-th date, we are willing to pick someone if that person is either the best or the second
best of those seen so far. Between the (t2 + 1)-th and t3-th date, we become willing to pick
anybody who is at least the third-best person seen so far, and so on. Basically, as time goes
on, we become increasingly desperate, and we reduce our expectations accordingly.

17.3 Paging and Caching

The next problem that we study arises in any system that has hierarchical memory, that
is, that has a larger but slower storage device and a faster but smaller one that can be used
as cache. Consider for example the virtual memory paged on a disk and the real memory,
or the content of a hard disk and the cache on the controller, or the RAM in a computer
and the level-2 cache on the processor, or the level-2 and the level-1 cache, and so on.

All these applications can be modeled in the following way: there is a cache which is an
array with k entries. Each entry contains a copy of an entry of a larger memory device,
together with a pointer to the location of that entry. When we want to access a location of
the larger device (a request), we first look up in the cache whether we have the content of
that entry stored there. If so, we have a hit, and the access takes negligible time. Otherwise,
we have a miss, and we need to fetch the entry from the slower large device. In negligible
extra time, we can also copy the entry in the cache for later use. If the cache is already full,
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however, we need to first delete one of the current cache entries in order to make room for
the new one. Which one should we delete?

Here we have an online problem in which the data is the sequence of requests, the decisions
of the algorithm are the entries to delete from the cache when it is full and there is a miss,
and the cost function that we want to minimize is the number of misses. (Which determine
the only non-negligible computational time.)

A reasonably good competitive algorithm is to remove the entry for which the longest time
has passed since the last request. This is the Least Recently Used heuristic, or LRU.

Theorem 17.1 Suppose that, for a certain sequence of requests, the optimal sequence of
choices for a size-h cache causes m misses. Then, for the same sequence of requests, LRU
for a size-k cache causes at most

k

k − h+ 1
·m

misses.

This means that, for a size-k cache, LRU is k-competitive against an algorithm that knows
the future and makes optimal choices. More interestingly, it says that if LRU caused m
misses on a size-k cache on a certain sequence of requests, then, even an optimal algorithm
that knew the future, would have caused at least m/2 misses using a size k/2 cache.

Proof: Suppose the large memory device has size N , and so a sequence of requests is a
sequence a1, . . . , an of integers in the range {1, . . . , N}. Let us divide the sequence into
“phases” in the following way. Let t be the time at which we see the (k+1)-th new request.
Then the first phase is a1, . . . , at−1. Next, consider the sequence at, . . . , an, and recursively
divide it into phases. For example, if k = 3 and we have the sequence of requests

35, 3, 12, 3, 3, 12, 3, 21, 12, 35, 12, 4, 6, 3, 1, 12, 4, 12, 3

then the division into phases is

(35, 3, 12, 3, 3), (12, 3, 3, 12, 3, 21, 12), (35, 12, 4), (6, 3, 1), (12, 4, 12, 3)

In each phase, LRU causes k misses.

Consider now an arbitrary other algorithm, operating with a size-h cache, and consider its
behavior over a sequence of phases which is like the above one, but with the first item in
each phase moved to the previous phase

(35, 3, 12, 3, 3, 12), (3, 3, 12, 3, 21, 12, 35), (12, 4, 6), (3, 1, 12), (4, 12, 3)

In the first phase, we have k + 1 distinct values, and so we definitely have at least k + 1
misses starting with an empty cache, no matter what the algorithm does. At the beginning
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of each subsequent phase, we know that the algorithm has in the cache the last request of
the previous phase, and then we do not know what is in the remaining h − 1 entries. We
know, however, that we are going to see k distinct requests which are different from the
last request, and so at least k − h + 1 of them must be out of the cache and must cause a
miss. So even an optimal algorithm causes at least k − h + 1 misses per phase, compared
with the k misses per phase of LRU, hence the competitive ratio.

(Note: we are glossing over the issue of what happens in the last phase, if the last phase has
less than k distinct requests, in which case it could happen that the optimal algorithm has
zero misses and LRU has a positive number of misses. In that case, we use the “surplus”
that we have in the analysis about the first phase, in which the optimum algorithm and
LRU have both k misses.) �

It can be proved that, if we knew the sequence of requests, then the optimal algorithm
is to take out of the cache the element whose next request is further in future. The LRU
algorithm is motivated by the heuristic that the element that has not been used for the
longest time is likely to also not be needed for the longest time. It is remarkable, however,
that such a heuristic works well even in a worst-case analysis.



Lecture 18

Using Expert Advice

In which we show how to use expert advice, and introduce the powerful “multiplicative
weight” algorithm.

We study the following online problem. We have n “experts” that, at each time step
t = 1, . . . , T , suggest a strategy about what to do at that time (for example, they might
be advising on what technology to use, on what investments to make, they might make
predictions on whether something is going to happen, thus requiring certain actions, and
so on). Based on the quality of the advice that the experts offered in the past, we decide
which advice to follow, or with what fraction of our investment to follow which strategy.
Subsequently, we find out which loss or gain was associated to each strategy, and, in par-
ticular, what loss or gain we personally incurred with the strategy or mix of strategies that
we picked, and we move to step t+ 1.

We want to come up with an algorithm to use the expert advice such that, at the end, that
is, at time T , we are about as well off as if we had known in advance which expert was the
one that gave the best advice, and we had always followed the strategy suggested by that
expert at each step. Note that we make no probabilistic assumption, and our analysis will
be a worst-case analysis over all possible sequences of events.

The “multiplicative update” algorithm provides a very good solution to this problem, and
the analysis of this algorithm is a model for the several other applications of this algorithm,
in rather different contexts.

18.1 A Simplified Setting

We begin with the following simplified setting: at each time step, we have to make a pre-
diction about an event that has two possible outcomes, and we can use the advice of n
“experts,” which make predictions about the outcome at each step. Without knowing any-
thing about the reliability of the experts, and without making any probabilistic assumption
on the outcomes, we want to come up with a strategy that will lead us to make not much
more mistakes than the “offline optimal” strategy of picking the expert which makes the
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fewest mistakes, and then always following the prediction of that optimal expert.

The algorithm works as follows: at each step t, it assigns a weight wti to each expert i,
which measures the confidence that the algorithm has in the validity of the prediction of
the expert. Initially, w0

i = 1 for all experts i. Then the algorithm makes the prediction that
is backed by the set of experts with largest total weight. For example, if the experts, and
us, are trying to predict whether the following day it will rain or not, we will look at the
sum of the weights of the experts that say it will rain, and the sum of the weights of the
experts that say it will not, and then we agree with whichever prediction has the largest
sum of weights. After the outcome is revealed, we divide by 2 the weight of the experts
that were wrong, and leave the weight of the experts that were correct unchanged.

We now formalize the above algorithm in pseudocode. We use {a, b} to denote the two
possible outcomes of the event that we are required to predict at each step.

• for each i ∈ {1, . . . , n} do w1
i := 1

• for each time t ∈ {1, . . . , T}

– let wt :=
∑

iw
t
i

– if the sum of wti over all the experts i that predict a is ≥ wt/2,
then predict a

– else predict b

– wait until the outcome is revealed

– for each i ∈ {1, . . . , n}
∗ if i was wrong then wt+1

i := wti/2

To analyze the algorithm, let mt
i be the indicator variable that expert i was wrong at time

t, that is, mt
i = 1 if the expert i was wrong at time i and mt

i = 0 otherwise. (Here m
stands for “mistake.”) Let mi =

∑T
t=1m

t
i be the total number of mistakes made by expert

i. Let mt
A be the indicator variable that our algorithm makes a mistake at time t, and

mA :=
∑T

t=1m
t
A be the total number of mistakes made by our algorithm.

We make the following two observations:

1. If the algorithm makes a mistake at time t, then the total weight of the experts that
are mistaken at time t is ≥ wt/2, and, at the following step, the weight of those
experts is divided by two, and this means that, if we make a mistake at time t then

wt+1 ≤ 3
4
wt

Because the initial total weight is w1 = n, we have that, at the end,

wT+1 ≤
(

3
4

)mA

· n
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2. For each expert i, the final weight is wT+1
i = 2−mi , and, clearly,

1
2mi

= wT+1
i ≤ wT+1

Together, the two previous observations mean that, for every expert i,

1
2mi
≤
(

3
4

)mA

· n

which means that, for every expert i,

mA ≤ O(mi + log n)

That is, the number of mistakes made by the algorithm is at most a constant times the
number of mistakes of the best expert, plus an extra O(log n) mistakes.

We will now discuss an algorithm that improves the above result in two ways. We will show
that, for every ε, the improved algorithm we can make the number of mistakes be at most
(1 + ε)mi + O

(
1
ε log n

)
for every ε, which can be seen to be optimal for small n, and the

improved algorithm will be able to handle a more general problem, in which the experts are
suggesting arbitrary strategies, and the outcome of each strategy can be an arbitrary gain
or loss.

18.2 The General Result

We now consider the following model. At each time step t, each expert i suggests a certain
strategy. We choose to follow the advice of expert i with probability pti, or, equivalently,
we allocate a pti fraction of our resources in the way expert i advised. Then we observe the
outcome of the strategies suggested by the experts, and of our own strategy. We call mt

i the
loss incurred by following the advice of expert i. The loss can be negative, in which case
it is a gain, and we normalize losses and gains so that mt

i ∈ [−1, 1] for every i and every
t. Our own loss for the time step t will then be

∑
i p
t
im

t
i. At the end, we would like to say

that our own sum of losses is not much higher than the sum of losses of the best expert.

As before, our algorithm maintains a weight for each expert, corresponding to our confidence
in the expert. The weights are initialized to 1. When an expert causes a loss, we reduce his
weight, and when an expert causes a gain, we increase his weight. To express the weight
updated in a single instruction, we have wt+1

i := (1 − εmt
i) · wti , where 0 < ε < 1/2 is a

parameter of our choice. Our probabilities pti are chosen proportionally to weights wti .
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• for each i ∈ {1, . . . , n} do w1
i := 1

• for each time t ∈ {1, . . . , T}

– let wt :=
∑

iw
t
i

– let pti := wti/w
t

– for each i, follow the strategy of expert i with probability pti
– wait until the outcome is revealed

– let mt
i be the loss of the strategy of expert i

– for each i ∈ {1, . . . , n}
∗ wt+1

i := (1− ε ·mt
i) · wti

To analyze the algorithm, we will need the following technical result.

Fact 18.1 For every ε ∈ [−1/2, 1/2],

eε−ε
2 ≤ 1 + ε ≤ eε

Proof: We will use the Taylor expansion

ex = 1 + x+
x2

2
+
x3

3!
+ · · ·

1. The upper bound. The Taylor expansion above can be seen as ex = 1 + x+
∑∞

t=1 x
2t ·(

1
(2t)! + x

(2t+1)!

)
, that is, ex equals 1 +x plus a sum of terms that are all non-negative

when x ≥ −1. Thus, in particular, we have 1 + ε ≤ eε for ε ∈ [−1/2, 1/2].

2. The lower bound for positive ε. We can also see that, for x ∈ [0, 1], we have

ex ≤ 1 + x+ x2

and so, for ε ∈ [0, 1] we have

eε−ε
2 ≤ 1 + ε− ε2 + ε2 − 2ε3 + ε4 ≤ 1 + ε

3. The lower bound for negative ε. Finally, for x ∈ [−1, 0] we have

ex = 1 + x+
x2

2
+
∞∑
t=1

x2t+1

(
1

(2t+ 1)!
+

x

(2t+ 2)!

)
≤ 1 + x+

x2

2

and so, for ε ∈ [−1/2, 0] we have

eε−ε
2 ≤ 1 + ε− ε2 +

1
2
ε2 − ε3 +

1
4
ε4 ≤ 1 + ε



18.2. THE GENERAL RESULT 131

�

Now the analysis proceeds very similarly to the analysis in the previous section. We let

mt
A :=

∑
i

ptim
t
i

be the loss of the algorithm at time t, and mA :=
∑T

t=1m
t
A the total loss at the end. We

denote by mi :=
∑T

t=1m
t
i the total loss of expert i.

If we look at the total weight at time t+ 1, it is

wt+1 =
∑
i

wt+1
i =

∑
i

(1− εmt
i) · wti

and we can rewrite it as

wt+1 = wt −
∑
i

εmt
iw

t
i = wt − wtε ·

∑
i

mt
ip
t
i = wt · (1− εmt

A)

Recalling that, initially, w1 = n, we have that the total weight at the end is

wT+1 = n ·
T∏
t=1

(1− εmt
A)

For each expert i, the weight of that expert at the end is

wT+1
i =

T∏
t=1

(1− εmt
i)

and, as before, we note that for every expert i we have

wT+1
i ≤ wT+1

Putting everything together, for every expert i we have

T∏
t=1

(1− εmt
i) ≤ n ·

T∏
t=1

(1− εmt
A)

Now it is just a matter of taking logarithms and of using the inequality that we proved
before.

ln
T∏
t=1

(1− εmt
A) =

T∑
i=1

ln 1− εmt
A ≤ −

T∑
i=1

εmt
A = −εmA
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ln
T∏
t=1

(1− εmt
i) =

T∑
t=1

ln 1− εmT
i ≥

T∑
t=1

−εmt
i − ε2(mt

i)
2

and, overall,

mA ≤ +mi + ε
T∑
i=1

|mt
i|+

lnn
ε

(18.1)

In the model of the previous section, at every step the loss of each expert is either 0 or 1,
and so the above expression simplifies to

mA ≤ (1 + ε)mi +
lnn
ε

which shows that we can get arbitrarily close to the best expert.

In every case, (18.1) simplifies to

mA ≤ mi + εT +
lnn
ε

and, if we choose ε =
√

lnn/T , we have

mA ≤ mi + 2
√
T lnn

which means that we come close to the optimum up to a small additive error.

To see that this is essentially the best that we can hope for, consider a playing a fair roulette
game as follows: for T times, we either bet $1 on red or $1 on black. If we win we win $1,
and if we lose we lose $1; we win and lose with probability 1/2 each at each step. Clearly,
for every betting strategy, our expected win at the end is 0. We can think of the problem
as there being two experts: the red expert always advises to bet red, and the black expert
always advises to bet black. For each run of the game, the strategy of always following the
best expert has a non-negative gain and, on average, following the best expert has a gain of
Ω(
√
T ), because there is Ω(1) probability that the best expert has a gain of Ω(

√
T ). This

means that we cannot hope to always achieve at least the gain of the best expert minus
o(
√
T ), even in a setting with 2 experts.

18.3 Applications

The general expert setting is very similar to a model of investments in which the experts
correspond to stocks (or other investment vehicles) and the outcomes correspond to the
variation in value of the stocks. The difference is that in our model we “invest” one unit
of money at each step regardless of what happened in previous steps, while in investment
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strategies we compound our gains (and losses). If we look at the logarithm of the value of
our investment, however, it is modeled correctly by the experts setting.

The multiplicative update algorithm that we described in the previous section arises in
several other contexts, with a similar, or even identical, analysis. For example, it arises in
the context of boosting in machine learning, and it leads to efficient approximate algorithms
for certain special cases of linear programming.
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