
OptNet: Differentiable Optimization as a Layer in Neural Networks

Brandon Amos
1

J. Zico Kolter
1

Abstract

This paper presents OptNet, a network architec-
ture that integrates optimization problems (here,
specifically in the form of quadratic programs)
as individual layers in larger end-to-end train-
able deep networks. These layers encode con-
straints and complex dependencies between the
hidden states that traditional convolutional and
fully-connected layers often cannot capture. In
this paper, we explore the foundations for such
an architecture: we show how techniques from
sensitivity analysis, bilevel optimization, and im-
plicit differentiation can be used to exactly differ-
entiate through these layers and with respect to
layer parameters; we develop a highly efficient
solver for these layers that exploits fast GPU-
based batch solves within a primal-dual interior
point method, and which provides backpropaga-
tion gradients with virtually no additional cost on
top of the solve; and we highlight the applica-
tion of these approaches in several problems. In
one notable example, we show that the method
is capable of learning to play mini-Sudoku (4x4)
given just input and output games, with no a pri-
ori information about the rules of the game; this
highlights the ability of our architecture to learn
hard constraints better than other neural architec-
tures.

1. Introduction

In this paper, we consider how to treat exact, constrained
optimization as an individual layer within a deep learn-
ing architecture. Unlike traditional feedforward networks,
where the output of each layer is a relatively simple (though
non-linear) function of the previous layer, our optimization
framework allows for individual layers to capture much
richer behavior, expressing complex operations that in to-

1School of Computer Science, Carnegie Mellon Univer-
sity. Pittsburgh, PA, USA. Correspondence to: Brandon Amos
<bamos@cs.cmu.edu>, J. Zico Kolter <zkolter@cs.cmu.edu>.

Proceedings of the 34 th
International Conference on Machine

Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

tal can reduce the overall depth of the network while pre-
serving richness of representation. Specifically, we build a
framework where the output of the i + 1th layer in a net-
work is the solution to a constrained optimization problem
based upon previous layers. This framework naturally en-
compasses a wide variety of inference problems expressed
within a neural network, allowing for the potential of much
richer end-to-end training for complex tasks that require
such inference procedures.

Concretely, in this paper we specifically consider the task
of solving small quadratic programs as individual layers.
These optimization problems are well-suited to captur-
ing interesting behavior and can be efficiently solved with
GPUs. Specifically, we consider layers of the form

zi+1 = argmin
z

1

2
z
T
Q(zi)z + q(zi)

T
z

subject to A(zi)z = b(zi)

G(zi)z h(zi)

(1)

where z is the optimization variable, Q(zi), q(zi), A(zi),
b(zi), G(zi), and h(zi) are parameters of the optimization
problem. As the notation suggests, these parameters can
depend in any differentiable way on the previous layer zi,
and which can eventually be optimized just like any other
weights in a neural network. These layers can be learned
by taking the gradients of some loss function with respect
to the parameters. In this paper, we derive the gradients of
(1) by taking matrix differentials of the KKT conditions of
the optimization problem at its solution.

In order to the make the approach practical for larger net-
works, we develop a custom solver which can simultane-
ously solve multiple small QPs in batch form. We do so
by developing a custom primal-dual interior point method
tailored specifically to dense batch operations on a GPU.
In total, the solver can solve batches of quadratic programs
over 100 times faster than existing highly tuned quadratic
programming solvers such as Gurobi and CPLEX. One cru-
cial algorithmic insight in the solver is that by using a
specific factorization of the primal-dual interior point up-
date, we can obtain a backward pass over the optimiza-
tion layer virtually “for free” (i.e., requiring no additional
factorization once the optimization problem itself has been
solved). Together, these innovations enable parameterized
optimization problems to be inserted within the architec-

OptNet: Differentiable Optimization as a Layer in Neural Networks

ture of existing deep networks.

We begin by highlighting background and related work,
and then present our optimization layer itself. Using matrix
differentials we derive rules for computing all the neces-
sary backpropagation updates. We then detail our specific
solver for these quadratic programs, based upon a state-of-
the-art primal-dual interior point method, and highlight the
novel elements as they apply to our formulation, such as
the aforementioned fact that we can compute backpropaga-
tion at very little additional cost. We then provide experi-
mental results that demonstrate the capabilities of the archi-
tecture, highlighting potential tasks that these architectures
can solve, and illustrating improvements upon existing ap-
proaches.

2. Background and related work

Optimization plays a key role in modeling complex phe-
nomena and providing concrete decision making processes
in sophisticated environments. A full treatment of opti-
mization applications is beyond our scope (Boyd & Van-
denberghe, 2004) but these methods have bound applica-
bility in control frameworks (Morari & Lee, 1999; Sastry
& Bodson, 2011); numerous statistical and mathematical
formalisms (Sra et al., 2012), and physical simulation prob-
lems like rigid body dynamics (Lötstedt, 1984). Generally
speaking, our work is a step towards learning optimization
problems behind real-world processes from data that can
be learned end-to-end rather than requiring human specifi-
cation and intervention.

In the machine learning setting, a wide array of applica-
tions consider optimization as a means to perform infer-
ence in learning. Among many other applications, these
architectures are well-studied for generic classification and
structured prediction tasks (Goodfellow et al., 2013; Stoy-
anov et al., 2011; Brakel et al., 2013; LeCun et al., 2006;
Belanger & McCallum, 2016; Belanger et al., 2017; Amos
et al., 2017); in vision for tasks such as denoising (Tappen
et al., 2007; Schmidt & Roth, 2014); and Metz et al. (2016)
uses unrolled optimization within a network to stabilize the
convergence of generative adversarial networks (Goodfel-
low et al., 2014). Indeed, the general idea of solving re-
stricted classes of optimization problem using neural net-
works goes back many decades (Kennedy & Chua, 1988;
Lillo et al., 1993), but has seen a number of advances in
recent years. These models are often trained by one of the
following four methods.

Energy-based learning methods These methods can be
used for tasks like (structured) prediction where the train-
ing method shapes the energy function to be low around the
observed data manifold and high elsewhere (LeCun et al.,
2006). In recent years, there has been a strong push to fur-
ther incorporate structured prediction methods like condi-

tional random fields as the “last layer” of a deep network
architecture (Peng et al., 2009; Zheng et al., 2015; Chen
et al., 2015) as well as in deeper energy-based architec-
tures (Belanger & McCallum, 2016; Belanger et al., 2017;
Amos et al., 2017). Learning in this context requires ob-
served data, which isn’t present in some of the contexts we
consider in this paper, and also may suffer from instabil-
ity issues when combined with deep energy-based archi-
tectures as observed in Belanger & McCallum (2016); Be-
langer et al. (2017); Amos et al. (2017).

Analytically If an analytic solution to the argmin can be
found, such as in an unconstrained quadratic minimization,
the gradients can often also be computed analytically. This
is done in Tappen et al. (2007); Schmidt & Roth (2014). We
cannot use these methods for the constrained optimization
problems we consider in this paper because there are no
known analytic solutions.

Unrolling The argmin operation over an unconstrained
objective can be approximated by a first-order gradient-
based method and unrolled. These architectures typically
introduce an optimization procedure such as gradient de-
scent into the inference procedure. This is done in Domke
(2012); Amos et al. (2017); Belanger et al. (2017); Metz
et al. (2016); Goodfellow et al. (2013); Stoyanov et al.
(2011); Brakel et al. (2013). The optimization procedure is
unrolled automatically or manually (Domke, 2012) to ob-
tain derivatives during training that incorporate the effects
of these in-the-loop optimization procedures. However, un-
rolling the computation of a method like gradient descent
typically requires a substantially larger network, and adds
substantially to the computational complexity of the net-
work.

In all of these existing cases, the optimization problem is
unconstrained and unrolling gradient descent is often easy
to do. When constraints are added to the optimization prob-
lem, iterative algorithms often use a projection operator
that may be difficult to unroll through. In this paper, we
do not unroll an optimization procedure but instead use
argmin differentiation as described in the next section.

Argmin differentiation Most closely related to our own
work, there have been several papers that propose some
form of differentiation through argmin operators. These
techniques also come up in bilevel optimization (Gould
et al., 2016; Kunisch & Pock, 2013) and sensitivity anal-
ysis (Bertsekas, 1999; Fiacco & Ishizuka, 1990; Bonnans
& Shapiro, 2013). In the case of Gould et al. (2016),
the authors describe general techniques for differentiation
through optimization problems, but only describe the case
of exact equality constraints rather than both equality and
inequality constraints (in the case inequality constraints,
they add these via a barrier function). Amos et al. (2017)

OptNet: Differentiable Optimization as a Layer in Neural Networks

considers argmin differentiation within the context of a spe-
cific optimization problem (the bundle method) but does
not consider a general setting. Johnson et al. (2016) per-
forms implicit differentiation on (multi-)convex objectives
with coordinate subspace constraints, but don’t consider in-
equality constraints and don’t consider in detail general lin-
ear equality constraints. Their optimization problem is only
in the final layer of a variational inference network while
we propose to insert optimization problems anywhere in
the network. Therefore a special case of OptNet layers
(with no inequality constraints) has a natural interpretation
in terms of Gaussian inference, and so Gaussian graphi-
cal models (or CRF ideas more generally) provide tools
for making the computation more efficient and interpreting
or constraining its structure. Similarly, the older work of
Mairal et al. (2012) considered argmin differentiation for a
LASSO problem, deriving specific rules for this case, and
presenting an efficient algorithm based upon our ability to
solve the LASSO problem efficiently.

In this paper, we use implicit differentiation (Dontchev
& Rockafellar, 2009; Griewank & Walther, 2008) and
techniques from matrix differential calculus (Magnus &
Neudecker, 1988) to derive the gradients from the KKT
matrix of the problem we are interested in. A notable dif-
ferent from other work within ML that we are aware of, is
that we analytically differentiate through inequality as well
as just equality constraints, but differentiating the comple-
mentarity conditions; this differs from e.g., Gould et al.
(2016) where they instead approximately convert the prob-
lem to an unconstrained one via a barrier method. We have
also developed methods to make this approach practical
and reasonably scalable within the context of deep archi-
tectures.

3. OptNet: solving optimization within a

neural network

Although in the most general form, an OptNet layer can
be any optimization problem, in this paper we will study
OptNet layers defined by a quadratic program

minimize
z

1

2
z
T
Qz + q

T
z

subject to Az = b, Gz h

(2)

where z 2 Rn is our optimization variable Q 2 Rn⇥n ⌫ 0
(a positive semidefinite matrix), q 2 Rn, A 2 Rm⇥n,
b 2 Rm, G 2 Rp⇥n and h 2 Rp are problem data,
and leaving out the dependence on the previous layer zi

as we showed in (1) for notational convenience. As is well-
known, these problems can be solved in polynomial time
using a variety of methods; if one desires exact (to numeri-
cal precision) solutions to these problems, then primal-dual
interior point methods, as we will use in a later section, are
the current state of the art in solution methods. In the neu-

ral network setting, the optimal solution (or more generally,
a subset of the optimal solution) of this optimization prob-
lems becomes the output of our layer, denoted zi+1, and
any of the problem data Q, q,A, b,G, h can depend on the
value of the previous layer zi. The forward pass in our Opt-
Net architecture thus involves simply setting up and finding
the solution to this optimization problem.

Training deep architectures, however, requires that we not
just have a forward pass in our network but also a back-
ward pass. This requires that we compute the derivative of
the solution to the QP with respect to its input parameters,
a general topic we topic we discussed previously. To ob-
tain these derivatives, we differentiate the KKT conditions
(sufficient and necessary conditions for optimality) of (2)
at a solution to the problem using techniques from matrix
differential calculus (Magnus & Neudecker, 1988). Our
analysis here can be extended to more general convex opti-
mization problems.

The Lagrangian of (2) is given by

L(z, ⌫,�) =
1

2
z
T
Qz + q

T
z + ⌫

T (Az � b) + �
T (Gz � h)

(3)
where ⌫ are the dual variables on the equality constraints
and � � 0 are the dual variables on the inequality con-
straints. The KKT conditions for stationarity, primal feasi-
bility, and complementary slackness are

Qz
? + q +A

T
⌫
? +G

T
�
? = 0

Az
? � b = 0

D(�?)(Gz
? � h) = 0,

(4)

where D(·) creates a diagonal matrix from a vector and z
?,

⌫
? and �

? are the optimal primal and dual variables. Taking
the differentials of these conditions gives the equations

dQz
? +Qdz + dq + dAT

⌫
?+

A
T d⌫ + dGT

�
? +G

T d� = 0

dAz
? +Adz � db = 0

D(Gz
? � h)d�+D(�?)(dGz

? +Gdz � dh) = 0

(5)

or written more compactly in matrix form
2

4
Q G

T
A

T

D(�?)G D(Gz
? � h) 0

A 0 0

3

5

2

4
dz
d�
d⌫

3

5 =

2

4
�dQz

? � dq � dGT
�
? � dAT

⌫
?

�D(�?)dGz
? +D(�?)dh

�dAz
? + db

3

5 .

(6)

Using these equations, we can form the Jacobians of z? (or
�
? and ⌫

?, though we don’t consider this case here), with
respect to any of the data parameters. For example, if we
wished to compute the Jacobian @z?

@b 2 Rn⇥m, we would

OptNet: Differentiable Optimization as a Layer in Neural Networks

simply substitute db = I (and set all other differential terms
in the right hand side to zero), solve the equation, and the
resulting value of dz would be the desired Jacobian.

In the backpropagation algorithm, however, we never want
to explicitly form the actual Jacobian matrices, but rather
want to form the left matrix-vector product with some
previous backward pass vector @`

@z? 2 Rn, i.e., @`
@z?

@z?

@b .
We can do this efficiently by noting the solution for the
(dz, d�, d⌫) involves multiplying the inverse of the left-
hand-side matrix in (6) by some right hand side. Thus, if
we multiply the backward pass vector by the transpose of
the differential matrix

2

4
dz

d�

d⌫

3

5 =

2

4
Q G

T
D(�?) A

T

G D(Gz
? � h) 0

A 0 0

3

5
�1 2

4
�

@`
@z?

�T

0
0

3

5 (7)

then the relevant gradients with respect to all the QP pa-
rameters can be given by

@`

@q
= dz

@`

@b
= �d⌫

@`

@h
= �D(�?)d�

@`

@Q
=

1

2
(dzz

T + zd
T
z)

@`

@A
= d⌫z

T + ⌫d
T
z

@`

@G
= D(�?)(d�z

T + �d
T
z)

(8)

where as in standard backpropagation, all these terms are
at most the size of the parameter matrices. We note that
some of these parameters should depend on the previous
layer zi and the gradients with respect to the previous layer
can be obtained through the chain rule. As we will see in
the next section, the solution to an interior point method in
fact already provides a factorization we can use to compute
these gradient efficiently.

3.1. An efficient batched QP solver

Deep networks are typically trained in mini-batches to take
advantage of efficient data-parallel GPU operations. With-
out mini-batching on the GPU, many modern deep learning
architectures become intractable for all practical purposes.
However, today’s state-of-the-art QP solvers like Gurobi
and CPLEX do not have the capability of solving multi-
ple optimization problems on the GPU in parallel across
the entire minibatch. This makes larger OptNet layers be-
come quickly intractable compared to a fully-connected
layer with the same number of parameters.

To overcome this performance bottleneck in our quadratic
program layers, we have implemented a GPU-based
primal-dual interior point method (PDIPM) based on Mat-
tingley & Boyd (2012) that solves a batch of quadratic pro-
grams, and which provides the necessary gradients needed
to train these in an end-to-end fashion. Our performance
experiments in Section 4.1 shows that our solver is signif-

icantly faster than the standard non-batch solvers Gurobi
and CPLEX.

Following the method of Mattingley & Boyd (2012), our
solver introduces slack variables on the inequality con-
straints and iteratively minimizes the residuals from the
KKT conditions over the primal variable z 2 Rn, slack
variable s 2 Rp, and dual variables ⌫ 2 Rm associ-
ated with the equality constraints and � 2 Rp associated
with the inequality constraints. Each iteration computes
the affine scaling directions by solving

K

2

664

�z
a↵

�s
a↵

��
a↵

�⌫
a↵

3

775 =

2

664

�(AT
⌫ +G

T
�+Qz + q)

�S�

�(Gz + s� h)
�(Az � b)

3

775 (9)

where

K =

2

664

Q 0 G
T

A
T

0 D(�) D(s) 0
G I 0 0
A 0 0 0

3

775 ,

then centering-plus-corrector directions by solving

K

2

664

�z
cc

�s
cc

��
cc

�⌫
cc

3

775 =

2

664

0
�µ1�D(�s

a↵)��
a↵

0
0

3

775 , (10)

where µ = s
T
�/p is the duality gap and � is defined in

Mattingley & Boyd (2012). Each variable v is updated with
�v = �v

a↵ +�v
cc using an appropriate step size. We ac-

tually solve a symmetrized version of the KKT conditions,
obtained by scaling the second row block by D(1/s). We
analytically decompose these systems into smaller sym-
metric systems and pre-factorize portions of them that don’t
change (i.e. that don’t involve D(�/s) between iterations).
We have implemented a batched version of this method
with the PyTorch library2 and have released it as an open
source library at https://github.com/locuslab/
qpth. It uses a custom CUBLAS extension that pro-
vides an interface to solve multiple matrix factorizations
and solves in parallel, and which provides the necessary
backpropagation gradients for their use in an end-to-end
learning system.

3.1.1. EFFICIENTLY COMPUTING GRADIENTS

A key point of the particular form of primal-dual interior
point method that we employ is that it is possible to com-
pute the backward pass gradients “for free” after solving
the original QP, without an additional matrix factorization
or solve. Specifically, at each iteration in the primal-dual
interior point, we are computing an LU decomposition of

2https://pytorch.org

OptNet: Differentiable Optimization as a Layer in Neural Networks

the matrix Ksym.3 This matrix is essentially a symmetrized
version of the matrix needed for computing the backprop-
agated gradients, and we can similarly compute the dz,�,⌫

terms by solving the linear system

Ksym

2

664

dz

ds

d̃�

d⌫

3

775 =

2

6664

⇣
� @`

@zi+1

⌘T

0
0
0

3

7775
, (11)

where d̃� = D(�?)d� for d� as defined in (7). Thus, all
the backward pass gradients can be computed using the
factored KKT matrix at the solution. Crucially, because
the bottleneck of solving this linear system is computing
the factorization of the KKT matrix (cubic time as op-
posed to the quadratic time for solving via backsubstitution
once the factorization is computed), the additional time re-
quirements for computing all the necessary gradients in the
backward pass is virtually nonexistent compared with the
time of computing the solution. To the best of our knowl-
edge, this is the first time that this fact has been exploited
in the context of learning end-to-end systems.

3.2. Properties and representational power

In this section we briefly highlight some of the mathe-
matical properties of OptNet layers. The proofs here are
straightforward, and are mostly based upon well-known re-
sults in convex analysis, so are deferred to the appendix.
The first result simply highlights that (because the solution
of strictly convex QPs is continuous), that OptNet layers
are subdifferentiable everywhere, and differentiable at all
but a measure-zero set of points.
Theorem 1. Let z

?(✓) be the output of an OptNet layer,

where ✓ = {Q, p,A, b,G, h}. Assuming Q � 0 and that

A has full row rank, then z
?(✓) is subdifferentiable every-

where: @z
?(✓) 6= ?, where @z

?(✓) denotes the Clarke

generalized subdifferential (Clarke, 1975) (an extension of

the subgradient to non-convex functions), and has a single

unique element (the Jacobian) for all but a measure zero

set of points ✓.

The next two results show the representational power of the
OptNet layer, specifically how an OptNet layer compares
to the common linear layer followed by a ReLU activation.
The first theorem shows that an OptNet layer can approxi-

3We actually perform an LU decomposition of a certain sub-
set of the matrix formed by eliminating variables to create only
a p ⇥ p matrix (the number of inequality constraints) that needs
to be factor during each iteration of the primal-dual algorithm,
and one m ⇥ m and one n ⇥ n matrix once at the start of the
primal-dual algorithm, though we omit the detail here. We also
use an LU decomposition as this routine is provided in batch form
by CUBLAS, but could potentially use a (faster) Cholesky fac-
torization if and when the appropriate functionality is added to
CUBLAS).

mate arbitrary elementwise piecewise-linear functions, and
so among other things can represent a ReLU layer.
Theorem 2. Let f : Rn ! Rn

be an elementwise piece-

wise linear function with k linear regions. Then the func-

tion can be represented as an OptNet layer using O(nk)
parameters. Additionally, the layer zi+1 = max{Wzi +
b, 0} for W 2 Rn⇥m

, b 2 Rn
can be represented by an

OptNet layer with O(mn) parameters.

Finally, we show that the converse does not hold: that there
are function representable by an OptNet layer which cannot
be represented exactly by a two-layer ReLU layer, which
take exponentially many units to approximate (known to
be a universal function approximator). A simple ex-
ample of such a layer (and one which we use in the
proof) is just the max over three linear functions f(z) =
max{aT1 x, aT2 x, aT3 x}.
Theorem 3. Let f(z) : Rn ! R be a scalar-valued func-

tion specified by an OptNet layer with p parameters. Con-

versely, let f
0(z) =

Pm
i=1 wi max{aTi z+ bi, 0} be the out-

put of a two-layer ReLU network. Then there exist func-

tions that the ReLU network cannot represent exactly over

all of R, and which require O(cp) parameters to approxi-

mate over a finite region.

3.3. Limitations of the method

Although, as we will show shortly, the OptNet layer has
several strong points, we also want to highlight the poten-
tial drawbacks of this approach. First, although, with an
efficient batch solver, integrating an OptNet layer into ex-
isting deep learning architectures is potentially practical,
we do note that solving optimization problems exactly as
we do here has has cubic complexity in the number of vari-
ables and/or constraints. This contrasts with the quadratic
complexity of standard feedforward layers. This means that
we are ultimately limited to settings where the number of
hidden variables in an OptNet layer is not too large (less
than 1000 dimensions seems to be the limits of what we
currently find to the be practical, and substantially less if
one wants real-time results for an architecture).

Secondly, there are many improvements to the OptNet lay-
ers that are still possible. Our QP solver, for instance, uses
fully dense matrix operations, which makes the solves very
efficient for GPU solutions, and which also makes sense for
our general setting where the coefficients of the quadratic
problem can be learned. However, for setting many real-
world optimization problems (and hence for architectures
that wish to more closely mimic some real-world opti-
mization problem), there is often substantial structure (e.g.,
sparsity), in the data matrices that can be exploited for ef-
ficiency. There is of course no prohibition of incorporat-
ing sparse matrix methods into the fast custom solver, but
doing so would require substantial added complexity, espe-
cially regarding efforts like finding minimum fill orderings

OptNet: Differentiable Optimization as a Layer in Neural Networks

for different sparsity patterns of the KKT systems. In our
open source solver qpth, we have started experimenting
with cuSOLVER’s batched sparse QR factorizations and
solves.

Lastly, we note that while the OptNet layers can be trained
just as any neural network layer, since they are a new cre-
ation and since they have manifolds in the parameter space
which have no effect on the resulting solution (e.g., scaling
the rows of a constraint matrix and its right hand side does
not change the optimization problem), there is admittedly
more tuning required to get these to work. This situation
is common when developing new neural network architec-
tures and has also been reported in the similar architecture
of Schmidt & Roth (2014). Our hope is that techniques for
overcoming some of the challenges in learning these layers
will continue to be developed in future work.

4. Experimental results

In this section, we present several experimental results that
highlight the capabilities of the QP OptNet layer. Specif-
ically we look at 1) computational efficiency over exiting
solvers; 2) the ability to improve upon existing convex
problems such as those used in signal denoising; 3) inte-
grating the architecture into an generic deep learning archi-
tectures; and 4) performance of our approach on a problem
that is challenging for current approaches. In particular, we
want to emphasize the results of our system on learning the
game of (4x4) mini-Sudoku, a well-known logical puzzle;
our layer is able to directly learn the necessary constraints
using just gradient information and no a priori knowl-
edge of the rules of Sudoku. The code and data for our
experiments are open sourced in the icml2017 branch
of https://github.com/locuslab/optnet and
our batched QP solver is available as a library at https:
//github.com/locuslab/qpth.

4.1. Batch QP solver performance

All of the OptNet performance results in this section are run
on an unloaded Titan X GPU. Gurobi is run on an unloaded
quad-core Intel Core i7-5960X CPU @ 3.00GHz.

Our OptNet layers are much more computationally expen-
sive than a linear or convolutional layer and a natural ques-
tion is to ask what the performance difference is. We set
up an experiment comparing a linear layer to a QP OptNet
layer with a mini-batch size of 128 on CUDA with ran-
domly generated input vectors sized 10, 50, 100, and 500.
Each layer maps this input to an output of the same dimen-
sion; the linear layer does this with a batched matrix-vector
multiplication and the OptNet layer does this by taking the
argmin of a random QP that has the same number of in-
equality constraints as the dimensionality of the problem.
Figure 1 shows the profiling results (averaged over 10 tri-

10 50 100 500
1uPber RI VarLableV (aQd IQequalLty CRQVtraLQtV)

10-5

10-4

10-3

10-2

10-1

100

101

5
u

Q
tL

P
e
 (

V)

LLQear)Rrward

43)Rrward

LLQear BaFNward

43 BaFNward

Figure 1. Performance of a linear layer and a QP layer.
(Batch size 128)

1 64 128

Batch 6ize

10-2

10-1

100

101

R
u

n
ti

m
e
 (

s)

GurRbi

2urs 6eriaO

2urs BatcheG

Figure 2. Performance of Gurobi and our QP solver.

als) of the forward and backward passes. The OptNet layer
is significantly slower than the linear layer as expected, yet
still tractable in many practical contexts.

Our next experiment illustrates why standard baseline QP
solvers like CPLEX and Gurobi without batch support are
too computationally expensive for QP OptNet layers to be
tractable. We set up random QP of the form (1) that have
100 variables and 100 inequality constraints in Gurobi and
in the serialized and batched versions of our solver qpth
and vary the batch size.4

Figure 2 shows the means and standard deviations of run-
ning each trial 10 times, showing that our batched solver
outperforms Gurobi, itself a highly tuned solver for reason-
able batch sizes. For the minibatch size of 128, we solve
all problems in an average of 0.18 seconds, whereas Gurobi
tasks an average of 4.7 seconds. In the context of training a
deep architecture this type of speed difference for a single
minibatch can make the difference between a practical and
a completely unusable solution.

4.2. Total variation denoising

Our next experiment studies how we can use the OptNet
architecture to improve upon signal processing techniques

4Experimental details: we sample entries of a matrix U from a
random uniform distribution and set Q = UTU +10�3I , sample
G with random normal entries, and set h by selecting generat-
ing some z0 random normal and s0 random uniform and setting
h = Gz0 + s0 (we didn’t include equality constraints just for
simplicity, and since the number of inequality constraints in the
primary driver of complexity for the iterations in a primal-dual
interior point method). The choice of h guarantees the problem is
feasible.

OptNet: Differentiable Optimization as a Layer in Neural Networks

that currently use convex optimization as a basis. Specifi-
cally, our goal in this case is to denoise a noisy 1D signal
given training data consistency of noisy and clean signals
generated from the same distribution. Such problems are
often addressed by convex optimization procedures, and
(1D) total variation denoising is a particularly common and
simple approach. Specifically, the total variation denoising
approach attempts to smooth some noisy observed signal y
by solving the optimization problem

argmin
z

1

2
||y � z||+ �||Dz||1 (12)

where D is the first-order differencing operation, which
can be expressed in matrix form by a matrix with rows
Di = ei � ei+1 Penalizing the `1 norm of the signal differ-

ence encourages this difference to be sparse, i.e., the num-
ber of changepoints of the signal is small, and we end up
approximating y by a (roughly) piecewise constant func-
tion.

To test this approach and competing ones on a denoising
task, we generate piecewise constant signals (which are the
desired outputs of the learning algorithm) and corrupt them
with independent Gaussian noise (which form the inputs
to the learning algorithm). Table 1 shows the error rate of
these four approaches.

4.2.1. BASELINE: TOTAL VARIATION DENOISING

To establish a baseline for denoising performance with total
variation, we run the above optimization problem varying
values of � between 0 and 100. The procedure performs
best with a choice of � ⇡ 13, and achieves a minimum test
MSE on our task of about 16.5 (the units here are unimpor-
tant, the only relevant quantity is the relative performances
of the different algorithms).

4.2.2. BASELINE: LEARNING WITH A
FULLY-CONNECTED NEURAL NETWORK

An alternative approach to denoising is by learning from
data. A function f✓(x) parameterized by ✓ can be used to
predict the original signal. The optimal ✓ can be learned
by using the mean squared error between the true and pre-
dicted signals. Denoising is typically a difficult function
to learn and Table 1 shows that a fully-connected neural
network perform substantially worse on this denoising task
than the convex optimization problem. Section B shows the
convergence of the fully-connected network.

4.2.3. LEARNING THE DIFFERENCING OPERATOR WITH
OPTNET

Between the feedforward neural network approach and the
convex total variation optimization, we could instead use a
generic OptNet layers that effectively allowed us to solve
(12) using any denoising matrix, which we randomly ini-

Figure 3. Initial and learned difference operators for denoising.

Method Train MSE Test MSE
FC Net 18.5 29.8
Pure OptNet 52.9 53.3
Total Variation 16.3 16.5
OptNet Tuned TV 13.8 14.4

Table 1. Denoising task error rates.

tialize. While the accuracy here is substantially lower than
even the fully connected case, this is largely the result of
learning an over-regularized solution to D. This is indeed
a point that should be addressed in future work (we refer
back to our comments in the previous section on the po-
tential challenges of training these layers), but the point we
want to highlight here is that the OptNet layer seems to
be learning something very interpretable and understand-
able. Specifically, Figure 3 shows the D matrix of our so-
lution before and after learning (we permute the rows to
make them ordered by the magnitude of where the large-
absolute-value entries occurs). What is interesting in this
picture is that the learned D matrix typically captures ex-
actly the same intuition as the D matrix used by total vari-
ation denoising: a mainly sparse matrix with a few entries
of alternating sign next to each other. This implies that for
the data set we have, total variation denoising is indeed the
“right” way to think about denoising the resulting signal,
but if some other noise process were to generate the data,
then we can learn that process instead. We can then at-
tain lower actual error for the method (in this case similar
though slightly higher than the TV solution), by fixing the
learned sparsity of the D matrix and then fine tuning.

4.2.4. FINE-TUNING AND IMPROVING THE TOTAL
VARIATION SOLUTION

To finally highlight the ability of the OptNet methods to
improve upon the results of a convex program, specifically
tailoring to the data. Here, we use the same OptNet archi-
tecture as in the previous subsection, but initialize D to be
the differencing matrix as in the total variation solution. As
shown in Table 1, the procedure is able to improve both the
training and testing MSE over the TV solution, specifically
improving upon test MSE by 12%. Section B shows the
convergence of fine-tuning.

OptNet: Differentiable Optimization as a Layer in Neural Networks

3
1

4
4 1

2 4 1 3
1 3 2 4
3 1 4 2
4 2 3 1

Figure 4. Example mini-Sudoku initial problem and solution.

4.3. MNIST

One compelling use case of an OptNet layer is to learn con-
straints and dependencies over the output or latent space of
a model. As a simple example to illustrate that OptNet lay-
ers can be included in existing architectures and that the
gradients can be efficiently propagated through the layer,
we show the performance of a fully-connected feedforward
network with and without an OptNet layer in Section A in
the supplemental material.

4.4. Sudoku

Finally, we present the main illustrative example of the rep-
resentational power of our approach, the task of learning
the game of Sudoku. Sudoku is a popular logical puzzle,
where a (typically 9x9) grid of points must be arranged
given some initial point, so that each row, each column, and
each 3x3 grid of points must contain one of each number
1 through 9. We consider the simpler case of 4x4 Sudoku
puzzles, with numbers 1 through 4, as shown in Figure 4.3.

Sudoku is fundamentally a constraint satisfaction problem,
and is trivial for computers to solve when told the rules of
the game. However, if we do not know the rules of the
game, but are only presented with examples of unsolved
and the corresponding solved puzzle, this is a challenging
task. We consider this to be an interesting benchmark task
for algorithms that seek to capture complex strict relation-
ships between all input and output variables. The input to
the algorithm consists of a 4x4 grid (really a 4x4x4 tensor
with a one-hot encoding for known entries an all zeros for
unknown entries), and the desired output is a 4x4x4 tensor
of the one-hot encoding of the solution.

This is a problem where traditional neural networks have
difficulties learning the necessary hard constraints. As a
baseline inspired by the models at https://github.
com/Kyubyong/sudoku, we implemented a multilayer
feedforward network to attempt to solve Sudoku problems.
Specifically, we report results for a network that has 10 con-
volutional layers with 512 3x3 filters each, and tried other
architectures as well. The OptNet layer we use on this task
is a completely generic QP in “standard form” with only
positivity inequality constraints but an arbitrary constraint
matrix Ax = b, a small Q = 0.1I to make sure the prob-
lem is strictly feasible, and with the linear term q simply
being the input one-hot encoding of the Sudoku problem.
We know that Sudoku can be approximated well with a
linear program (indeed, integer programming is a typical

0 2 4 6 8 10 12 14 16 18

Epoch

10-3

10-2

10-1

Lo
ss

Conv TraLn Conv Test 2pt1et TraLn 2pt1et Test

0 2 4 6 8 10 12 14 16 18

Epoch

10-3

10-2

10-1

Lo
ss

0 2 4 6 8 10 12 14 16 18

Epoch

10-3

10-2

10-1

100

E
rr
o
r

Figure 5. Sudoku training plots.

solution method for such problems), but the model here is
told nothing about the rules of Sudoku.

We trained these models using ADAM (Kingma & Ba,
2014) to minimize the MSE (which we refer to as “loss”)
on a dataset we created consisting of 9000 training puz-
zles, and we then tested the models on 1000 different held-
out puzzles. The error rate is the percentage of puzzles
solved correctly if the cells are assigned to whichever in-
dex is largest in the prediction. Figure 5 shows that the
convolutional is able to learn all of the necessary logic for
the task and ends up over-fitting to the training data. We
contrast this with the performance of the OptNet network,
which learns most of the correct hard constraints within the
first three epochs and is able to generalize much better to
unseen examples.

5. Conclusion

We have presented OptNet, a neural network architecture
where we use optimization problems as a single layer in
the network. We have derived the algorithmic formula-
tion for differentiating through these layers, allowing for
backpropagating in end-to-end architectures. We have also
developed an efficient batch solver for these optimizations
based upon a primal-dual interior point method, and devel-
oped a method for attaining the necessary gradient informa-
tion “for free” from this approach. Our experiments high-
light the potential power of these networks, showing that
they can solve problems where existing networks are very
poorly suited, such as learning Sudoku problems purely
from data. There are many future directions of research
for these approaches, but we feel that they add another im-
portant primitive to the toolbox of neural network practi-
tioners.

OptNet: Differentiable Optimization as a Layer in Neural Networks

Acknowledgments

BA is supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No.
DGE1252522. We would like to thank the developers
of PyTorch for helping us add core features, particularly
Soumith Chintala and Adam Paszke. We also thank Ian
Goodfellow, Lekan Ogunmolu, Rui Silva, Po-Wei Wang,
and Eric Wong for invaluable comments, as well as Rocky
Duan who helped us improve our feedforward network
baseline on mini-Sudoku.

References

Amos, Brandon, Xu, Lei, and Kolter, J Zico. Input con-
vex neural networks. In Proceedings of the International

Conference on Machine Learning, 2017.

Belanger, David and McCallum, Andrew. Structured pre-
diction energy networks. In Proceedings of the Interna-

tional Conference on Machine Learning, 2016.

Belanger, David, Yang, Bishan, and McCallum, Andrew.
End-to-end learning for structured prediction energy net-
works. In Proceedings of the International Conference

on Machine Learning, 2017.

Bertsekas, Dimitri P. Nonlinear programming. Athena sci-
entific Belmont, 1999.

Bonnans, J Frédéric and Shapiro, Alexander. Perturbation

analysis of optimization problems. Springer Science &
Business Media, 2013.

Boyd, Stephen and Vandenberghe, Lieven. Convex opti-

mization. Cambridge university press, 2004.

Brakel, Philémon, Stroobandt, Dirk, and Schrauwen, Ben-
jamin. Training energy-based models for time-series im-
putation. Journal of Machine Learning Research, 14(1):
2771–2797, 2013.

Chen, Liang-Chieh, Schwing, Alexander G, Yuille, Alan L,
and Urtasun, Raquel. Learning deep structured models.
In Proceedings of the International Conference on Ma-

chine Learning, 2015.

Clarke, Frank H. Generalized gradients and applica-
tions. Transactions of the American Mathematical So-

ciety, 205:247–262, 1975.

Domke, Justin. Generic methods for optimization-based
modeling. In AISTATS, volume 22, pp. 318–326, 2012.

Dontchev, Asen L and Rockafellar, R Tyrrell. Implicit
functions and solution mappings. Springer Monogr.

Math., 2009.

Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and
Chandra, Tushar. Efficient projections onto the l 1-ball
for learning in high dimensions. In Proceedings of the

25th international conference on Machine learning, pp.
272–279, 2008.

Fiacco, Anthony V and Ishizuka, Yo. Sensitivity and stabil-
ity analysis for nonlinear programming. Annals of Oper-

ations Research, 27(1):215–235, 1990.

Goodfellow, Ian, Mirza, Mehdi, Courville, Aaron, and
Bengio, Yoshua. Multi-prediction deep boltzmann ma-
chines. In Advances in Neural Information Processing

Systems, pp. 548–556, 2013.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu,
Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adversarial nets.
In Advances in Neural Information Processing Systems,
pp. 2672–2680, 2014.

Gould, Stephen, Fernando, Basura, Cherian, Anoop, An-
derson, Peter, Santa Cruz, Rodrigo, and Guo, Edison. On
differentiating parameterized argmin and argmax prob-
lems with application to bi-level optimization. arXiv

preprint arXiv:1607.05447, 2016.

Griewank, Andreas and Walther, Andrea. Evaluating

derivatives: principles and techniques of algorithmic

differentiation. SIAM, 2008.

Johnson, Matthew, Duvenaud, David K, Wiltschko, Alex,
Adams, Ryan P, and Datta, Sandeep R. Composing
graphical models with neural networks for structured
representations and fast inference. In Advances in Neural

Information Processing Systems, pp. 2946–2954, 2016.

Kennedy, Michael Peter and Chua, Leon O. Neural net-
works for nonlinear programming. IEEE Transactions

on Circuits and Systems, 35(5):554–562, 1988.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Kunisch, Karl and Pock, Thomas. A bilevel optimization
approach for parameter learning in variational models.
SIAM Journal on Imaging Sciences, 6(2):938–983, 2013.

LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ranzato, M,
and Huang, F. A tutorial on energy-based learning. Pre-

dicting structured data, 1:0, 2006.

Lillo, Walter E, Loh, Mei Heng, Hui, Stefen, and Zak,
Stanislaw H. On solving constrained optimization prob-
lems with neural networks: A penalty method approach.
IEEE Transactions on neural networks, 4(6):931–940,
1993.

OptNet: Differentiable Optimization as a Layer in Neural Networks

Lötstedt, Per. Numerical simulation of time-dependent
contact and friction problems in rigid body mechanics.
SIAM journal on scientific and statistical computing, 5
(2):370–393, 1984.

Magnus, X and Neudecker, Heinz. Matrix differential cal-
culus. New York, 1988.

Mairal, Julien, Bach, Francis, and Ponce, Jean. Task-driven
dictionary learning. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 34(4):791–804, 2012.

Mattingley, Jacob and Boyd, Stephen. Cvxgen: A code
generator for embedded convex optimization. Optimiza-

tion and Engineering, 13(1):1–27, 2012.

Metz, Luke, Poole, Ben, Pfau, David, and Sohl-Dickstein,
Jascha. Unrolled generative adversarial networks. arXiv

preprint arXiv:1611.02163, 2016.

Morari, Manfred and Lee, Jay H. Model predictive con-
trol: past, present and future. Computers & Chemical

Engineering, 23(4):667–682, 1999.

Peng, Jian, Bo, Liefeng, and Xu, Jinbo. Conditional neu-
ral fields. In Advances in neural information processing

systems, pp. 1419–1427, 2009.

Sastry, Shankar and Bodson, Marc. Adaptive control: sta-

bility, convergence and robustness. Courier Corporation,
2011.

Schmidt, Uwe and Roth, Stefan. Shrinkage fields for effec-
tive image restoration. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pp.
2774–2781, 2014.

Sra, Suvrit, Nowozin, Sebastian, and Wright, Stephen J.
Optimization for machine learning. Mit Press, 2012.

Stoyanov, Veselin, Ropson, Alexander, and Eisner, Jason.
Empirical risk minimization of graphical model param-
eters given approximate inference, decoding, and model
structure. In AISTATS, pp. 725–733, 2011.

Tappen, Marshall F, Liu, Ce, Adelson, Edward H, and Free-
man, William T. Learning gaussian conditional random
fields for low-level vision. In Computer Vision and Pat-

tern Recognition, 2007. CVPR’07. IEEE Conference on,
pp. 1–8. IEEE, 2007.

Zheng, Shuai, Jayasumana, Sadeep, Romera-Paredes,
Bernardino, Vineet, Vibhav, Su, Zhizhong, Du, Dalong,
Huang, Chang, and Torr, Philip HS. Conditional random
fields as recurrent neural networks. In Proceedings of

the IEEE International Conference on Computer Vision,
pp. 1529–1537, 2015.

