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ANNOUNCEMENTS
Please check out ELMS for a join link to our Slack channel!

Should auto-join if you have a @cs.umd.edu or @umd.edu
email (feel free to add your friends outside of the course!)
• I think if you share the join link from Slack, anyone can join –

feel free to add folks, but be reasonable!

I regret making the Slack already because people are talking 
about /r/WallStreetBets.
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WRAPPING UP 
FROM LAST LECTURE …



EXAMPLE: RESIDENT-
HOSPITAL ASSIGNMENT
1940s: decentralized resident-hospital matching

• Market “unraveled”, offers came earlier and earlier, quality of 
matches decreased

1950s: NRMP introduces hospital-proposing deferred acceptance 
algorithm
1970s: couples increasingly don’t use NRMP
1998: matching with couple constraints

• (Stable matching may not exist anymore …)

Take-home 
message

Looks like: M.D.s aren’t the only 
type of doctor who help people! 4



EXAMPLE: COMBINATORIAL 
COURSE ALLOCATION
[IMAGES FROM BUDISH ET AL. WORKING PAPER 2016]

BIDDING DYNAMIC EXCLUSIONS
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“Funny money” used for bidding



EXAMPLE: VOTING
Set of voters N and a set of alternatives:

{Joe Biden, Bernie Sanders, Donald Trump}
Each voter ranks the candidates:

v1: Donald Trump > Bernie > Joe Biden
v2: Joe Biden > Bernie > Donald Trump
…

A preference profile is the set of all voters’ rankings
Can we choose a voting rule – that is, a function that takes 
preference profiles and returns a winning alternative – that:
• “Behaves well”
• Isn’t manipulable by strategic agents
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EXAMPLE: FAIR 
ALLOCATION
Divisible goods:

• Splitting land, cutting cake
Indivisible goods:

• Splitting up assets after divorce (house, cars, pets) 

A chief concern: defining and guaranteeing the fairness of the 
final allocation
An allocation is envy free if each player values her own 
allocated set of goods at least as highly as any other player’s 
allocated set

When do envy-free allocations exist?  How can we compute 
them?  What can we do when they don’t exist?

http://spliddit.org

7



EXAMPLE: FOOD 
BANK ALLOCATION
Food banks supply nutrition to the needy 
for free or at a reduced cost
• Much of that food comes from donors 

(e.g. supermarkets, manufacturers)

Distribution is overseen by a large non-
profit organization, Feeding America
• Previously: centralized allocation based 

on perceived need of food banks
• Currently: food banks bid in an online 

auction using a fake currency for loads 
of donated food.
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EXAMPLE:
SECURITY GAMES
Where should we deploy security forces (checkpoints, cop 
cars, dogs, troops), assuming a rational adversary who can 
observe our deployment strategy?
• Checkpoints at airports

• Patrol routes on the water on the borders

• Anti-poacher teams near big game

How do we compute these strategies?
What if the adversary isn’t rational?
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EXAMPLE: KIDNEY 
TRANSPLANTATION
• US waitlist: over 100,000

• 35-37k added each year
• 4,537 people died while waiting
• 11,559 people received a kidney

from the deceased donor waitlist
• 5,283 people received a kidney from a living donor

• Some through kidney exchanges
• (We work extensively with the UNOS exchange.)

1988 1993 1998 2003 2008 2013

Transplants Waiting List

Demand

Supply

[Roth et al. 2004]
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EXAMPLE: DECEASED-
DONOR ALLOCATION
Online bipartite matching problem:
• Set of patients is known (roughly) in advance
• Organs arrive and must be dispatched quickly
Constraints:
• Locality: organs only stay good for 24 hours
• Blood type, tissue type, etc.
Who gets the organ?  Prioritization based on:
• Age?
• QALY maximization?
• Quality of match?
• Time on the waiting list?
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EXAMPLE: KIDNEY EXCHANGE

12



NON-DIRECTED DONORS & CHAINS

Not executed simultaneously, so no length cap required based on 
logistic concerns …

… but in practice edges fail, so some finite cap is used!

NDD

P1

D1

P2

D2

P3

D3

…Pay it 
forward

[Rees et al. 2009]
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What is the “best” matching objective?
• Maximize matches right now or over time?

• Maximize transplants or matches?

• Prioritization schemes (i.e. fairness)?
• Modeling choices?

• Incentives? Ethics? Legality?

Can we design a mechanism that performs well in 
practice, is computationally tractable, and is 
understandable by humans?

EXAMPLE: KIDNEY EXCHANGE
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TECHNIQUES WE’LL USE
(THIS + NEXT TWO LECTURES WILL COVER THESE, 

IN THE CONTEXT OF MECHANISM DESIGN)
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COMBINATORIAL 
OPTIMIZATION
Combinatorial optimization lets us select the “best element”
from a set of elements.
Some PTIME problems:
• Some forms of matching
• 2-player zero-sum Nash
• Compact LPs
Some PPAD- or NP-hard problems:
• More complex forms of matching
• Many equilibrium computations
Some > NP-hard problems:
• Randomizing over a set of all feasible X, where all feasible X

must be enumerated (#P-complete)
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C.O. FOR KIDNEY EXCHANGE:
REFRESHER ON PROBLEM
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C.O. FOR KIDNEY EXCHANGE:
THE EDGE FORMULATION

Binary variable xij for each edge from i to j

Maximize
u(M) = Σ wij xij

Subject to
Σj xij = Σj xji for each vertex i
Σj xij ≤ 1 for each vertex i

Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1)

(no path of length L that doesn’t end where it started – cycle cap)

[Abraham et al. 2007]

Flow constraint
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Binary variable xc for each feasible cycle or chain c

Maximize
u(M) = Σ wc xc

Subject to
Σc : i in c xc ≤ 1 for each vertex i

[Roth et al. 2004, 2005,
Abraham et al. 2007]

C.O. FOR KIDNEY EXCHANGE:
THE CYCLE FORMULATION
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C.O. FOR KIDNEY EXCHANGE: 
COMPARISON
Tradeoffs in number of variables, constraints

• IP #1: O(|E|L) constraints vs. O(|V|) for IP #2
• IP #1: O(|V|2) variables vs. O(|V|L) for IP #2

IP #2’s relaxation is weakly tighter than #1’s.  Quick intuition 
in one direction: 

• Take a length L+1 cycle.  #2’s LP relaxation is 0.
• #1’s LP relaxation is (L+1)/2   – with ½ on each edge

Recent work focuses on balancing tight LP relaxations and 
model size [Constantino et al. 2013, Glorie et al. 2014, Klimentova et al. 2014, Alvelos et 
al. 2015, Anderson et al. 2015, Mak-Hau 2015, Manlove&O’Malley 2015, Plaut et al. 2016, …]:

• We will discuss (~about a month, possibly with Duncan) new 
compact formulations, some with tightest relaxations known, 
all amenable to failure-aware matching
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GAME THEORY & 
MECHANISM DESIGN
We assume participants in our mechanisms are:
• Selfish utility maximizers

• Rational (typically – sometimes relaxed)

Game theory & M.D. give us the language to describe 
desirable properties of mechanisms:
• Incentive compatibility
• Individual rationality

• Efficiency
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MACHINE LEARNING
Predicting supply and demand
Computing optimal matching/allocation policies:
• MDPs
• RL
• POMDPs, if you’re feeling brave/masochistic

And: recent work looks at fairness and discrimination in 
machine learning – interesting project discussion, see Slack!
• “… when a search was performed on a name that was “racially 

associated” with the black community, the results were much 
more likely to be accompanied by an ad suggesting that the 
person had a criminal record—regardless of whether or not they 
did.”
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RANDOM GRAPH THEORY

(Might cover a bit in the matching and 
barter exchange lectures; talk to me.) 23



NEXT THIS CLASS:
GAME THEORY PRIMER

Thanks to: AGT book, Blum (AB), Conitzer (VC), Sandholm (TS), Osborne&Rubinstein (OR) 24



WHAT IS GAME THEORY?
“… the study of mathematical models of conflict and 
cooperation between intelligent rational decision-makers.”

“Intelligent rational decision-makers” = agents
• Have individual preferences specified by utility functions
• Can take different actions (or randomize over them)

Utility of agents usually, but not always, depends on the 
actions of other agents
• What’s best for me is a function of what’s best for you …

• … which is a function of what’s best for me ...
• ... which is a function of what’s best for you ...

• ... which is …
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WHAT IS “UTILITY” …?
“ … utility is a measure of preferences over some set of 
goods and services.”
Formally:
• Let O be the set of outcomes

(e.g., O = {{apple,orange}, {apple}, {orange}, { }})
• A utility function u : O à Â ranks outcomes, and represents a 

preference relation ! over the set of outcomes O
Example:
• u({apple,orange}) = 5
• u({apple}) = u({orange}) = 3
• u({ }) = 0     à { } !"{apple} ! {orange} ! {apple,orange}
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HOW DO WE MEASURE 
“UTILITY” …?
u({apple,orange}) = 5 
• 5 dollars?  5 clams?  5 days to live?
• Standard: 5 “utils” – it doesn’t typically matter
• Agent’s behavior under u(o) is typically the same as under u’(o) = 

a + b*u(o)

u({apple}) = 3 < 5 = u({apple,orange})
• Cardinal utility: 3 < 5

• (We’ll see this in security games and auctions)
• Ordinal utility: {apple,orange} ! {apple}

• Doesn’t encode strength of a preference, just ordering
• (We’ll see more of this in social choice)
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RISK ATTITUDES
Which would you prefer?

• A lottery ticket that pays out $10 with probability .5 and $0 
otherwise, or

• A lottery ticket that pays out $3 with probability 1
How about:

• A lottery ticket that pays out $100,000,000 with probability .5 
and $0 otherwise, or

• A lottery ticket that pays out $30,000,000 with probability 1
Usually, people do not simply go by expected value

VC 28



RISK ATTITUDES –
EXPECTED VALUE
An agent is risk-neutral if she only cares about the expected 
value of the lottery ticket
An agent is risk-averse if she always prefers the expected 
value of the lottery ticket to the lottery ticket

• Most people are like this
An agent is risk-seeking if she always prefers the lottery 
ticket to the expected value of the lottery ticket

29VC



DECREASING 
MARGINAL UTILITY
Typically, at some point, having an extra dollar does not 
make people much happier (decreasing marginal utility)

utility

money$200 $1500 $5000

buy a bike (utility = 1)

buy a car (utility = 2)

buy a nicer car (utility = 3)

30VC

“Typically”



MAXIMIZING EXPECTED UTILITY

Lottery 1: get $1500 with probability 1 à gives expected utility 2
Lottery 2: get $5000 with probability .4, $200 otherwise

• à expected utility .4*3 + .6*1 = 1.8
E$[Lottery 2] = .4*$5000 + .6*$200 = $2120 > $1500 = E$[Lottery 1]
So: maximizing expected utility is consistent with risk aversion (assuming 
decreasing marginal utility)

31

utility

money$200 $1500 $5000

buy a bike (utility = 1)

buy a car (utility = 2)

buy a nicer car (utility = 3)

VC



RISK ATTITUDES ASSUMING 
EXPECTED UTILITY MAX’ING

utility

money

Green has decreasing marginal utility → risk-averse
Blue has constant marginal utility → risk-neutral
Red has increasing marginal utility → risk-seeking
Grey’s marginal utility is sometimes increasing, sometimes decreasing → 
neither risk-averse (everywhere) nor risk-seeking (everywhere)

32VC



STRATEGIES & UTILITY
A strategy si for agent i is a mapping of history/the agent’s 
knowledge of the world to actions
• Pure: “perform action x with probability 1”
• Randomized: “do x with prob 0.2 and y with prob 0.8”
A strategy set is the set of strategies available to agent i
• Can be infinite (infinite number of actions, randomization)
A strategy profile is an instantiation (s1, s2, s3, …, sN)
Abuse of notation: we’ll use s-i to refer to all strategies played 
other than that by agent i
• i = 2, then s-i = (s1, s3, ..., sN)
Utils awarded after game is played: ui = ui(si, s-i)
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NATURE
Agents act strategically in the face of what they
believe other agents will do, who act based on …
There may be other sources of non-strategic randomness
Included (when needed) in our models as a unique agent 
called nature, which acts:
• Probabilistically
• Without reasoning about what other agents will do
(Sometimes referred to as agent i = 0, often just nature.)

34



GAME REPRESENTATIONS

0, 0 -1, 1 1, -1
1, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

Row player
aka. player 1

chooses a row

Column player aka. 
player 2

(simultaneously) 
chooses a column

A row or column is 
called an action or 

(pure) strategy
Row player’s utility is always listed first, column player’s second

Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.VC



GAME REPRESENTATIONS

Extensive form 
(aka tree form)

player 1

1, 2

3, 4

player 2Up

Down

Left

Right

5, 6

7, 8

player 2

Left

Right

Matrix form 
(aka normal form
aka strategic form)

player 1’s
strategy

player 2’s strategy

1, 2Up

Down

Left,
Left

Left,
Right

3, 4

5, 6 7, 8

Right,
Left

Right,
Right

3, 41, 2

5, 6 7, 8

Potential combinatorial explosion
TS 36



SEINFELD’S ROCK-PAPER-
SCISSORS

0, 0 1, -1 1, -1
-1, 1 0, 0 -1, 1
-1, 1 1, -1 0, 0

MICKEY: All right, rock beats paper!
(Mickey smacks Kramer's hand for losing)
KRAMER: I thought paper covered rock.

MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?

MICKEY: (looks at hand) Nothing beats rock.

VC



DOMINANCE
Player i’s strategy si strictly dominates si’ if 

• for any s-i, ui(si , s-i) > ui(si’, s-i) 
si weakly dominates si’ if 

• for any s-i, ui(si , s-i) ≥ ui(si’, s-i); and
• for some s-i, ui(si , s-i) > ui(si’, s-i)

0, 0 1, -1 1, -1
-1, 1 0, 0 -1, 1
-1, 1 1, -1 0, 0

strict dominance

weak dominance

VC



MIXED STRATEGIES & DOMINANCE
Mixed strategy for player i = probability distribution over player i’s 
(pure) strategies

E.g.,1/3             , 1/3         , 1/3

Example of dominance by a mixed strategy:

3, 0 0, 0
0, 0 3, 0
1, 0 1, 0

1/2

1/2
Usage: 

σi denotes a 
mixed strategy, 

si denotes a pure 
strategy

VC
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BEST-RESPONSE STRATEGIES
Suppose you know your opponent’s mixed strategy

• E.g., your opponent plays rock 50% of the time and scissors 50%
What is the best strategy for you to play?
Rock gives .5*0 + .5*1 = .5
Paper gives .5*1 + .5*(-1) = 0
Scissors gives .5*(-1) + .5*0 = -.5
So the best response to this opponent strategy is to (always) 
play rock
There is always some pure strategy that is a best response

• Suppose you have a mixed strategy that is a best response; then 
every one of the pure strategies that that mixed strategy places 
positive probability on must also be a best response

VC



DOMINANT STRATEGY 
EQUILIBRIA (DSE)
Best response  si*:  for all si’,  ui(si*,s-i) ≥ ui(si’,s-i)
Dominant strategy  si*:   si* is a best response for all s-i

• Does not always exist
• Inferior strategies are called “dominated”

DSE is a strategy profile where each agent has picked its 
dominant strategy

• Requires no counterspeculation – just enumeration

cooperate

cooperate defect

defect

3, 3 0, 5

5, 0 1, 1

Pareto optimal?

Social welfare
maximizing?

41TS



ZERO-SUM GAMES (2-P)
Two-player zero-sum games are a special – purely competitive –
case of general games
• Everything I win you lose, and vice versa
Example: heads-up poker (with no rake)
A minimax-optimal strategy is a strategy that 
maximizes the expected minimum gain
• Guarantees the “best minimum” in expectation, no matter 

which strategy your opponent selects
Theorem [von Neumann ’28] – “Minimax Theorem”:
• Every 2-P zero-sum game has a unique value V
• Maximin utility: maxσi mins-i ui(σi, s-i) (= - minσi maxs-i u-i(σi, s-i))
• Minimax utility: minσ-imaxsiui(si, σ-i) (= - maxσ-iminsiu-i(si, σ-i))
• Theorem: V = maxσi mins-i ui(σi, s-i) = minσ-imaxsiui(si, σ-i) 42

+1, -1 -2, +2

+2, -2 0, 0



GENERAL-SUM GAMES (2-P)
You could still play a minimax strategy in general-sum games
• i.e., pretend that the opponent is only trying to hurt you

But this is not rational:

0, 0 3, 1
1, 0 2, 1

• If Col were trying to hurt Row, Col would play Left, so Row should 
play Down

• In reality, Col will play Right (strictly dominant), so Row should 
play Up

• Is there a better generalization of minimax strategies in zero-sum 
games to general-sum games?

Row

Col

VC 43



GENERAL-SUM GAMES: 
NASH EQUILIBRIA (2-P)
Nash equilibrium: a pair of strategies that are stable
Stable: neither agent has incentive to deviate from his or her 
selected strategy on their own

Theorem [Nash 1950]: any general-sum game has at least 
one Nash equilibrium
• Might require mixed strategies (randomization)

Corollary for 2-P zero-sum games: Minimax Theorem!
• WLOG pick one of the NE, let V = value of Row player

• Assumed NE, so neither player can do better (even fully 
knowing the other player’s mixed strategy!) à minimax-opt 44

2, 2 -1, -1
-1, -1 2, 2

Row

Col

????????



EXAMPLE: CHICKEN

0, 0 -1, 1
1, -1 -5, -5

Straight

D

Dodge

S

• Thankfully, (D, S) and (S, D) are Nash equilibria
– They are pure-strategy Nash equilibria: nobody randomizes
– They are also strict Nash equilibria: changing your strategy will 

make you strictly worse off
• No other pure-strategy Nash equilibria

VC

D
S

D S
???????? ????????
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Is there an NE that uses mixed strategies?
• Say, where player 1 uses a mixed strategy?

• Note: if a mixed strategy is a best response, then all of the pure strategies 
that it randomizes over must also be best responses

• So we need to make player 1 indifferent between D and S
• Player 1’s utility for playing D = -pc

S

• Player 1’s utility for playing S = pc
D - 5pc

S = 1 - 6pc
S

• So we need -pc
S = 1 - 6pc

S which means pc
S = 1/5

• Then, player 2 needs to be indifferent as well
• Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))

– People may die!  Expected utility -1/5 for each player

VC

0, 0 -1, 1
1, -1 -5, -5

D
S

D SCHICKEN
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CRITICISMS OF NASH 
EQUILIBRIUM
Not unique in all games (like the example on Slide 31)
• Approaches for addressing this problem

• Refinements (=strengthenings) of the equilibrium concept
• Eliminate weakly dominated strategies first (IEDS)
• Choose the Nash equilibrium with highest welfare
• Subgame perfection … [see AGT book on course page]

• Mediation, communication, convention, learning, …
Collusions amongst agents not handled well
• “No agent wants to deviate on her own”
Can be disastrous to “partially” play an NE
• (More) people may die!
• Correlated equilibria – strategies selected by an outsider, but the 

strategies must be stable (see Chp 2.7 of AGT)

TS, AGT 47



CORRELATED EQUILIBRIUM
Suppose there is a trustworthy mediator who has offered to help 
out the players in the game
The mediator chooses a profile of pure strategies, perhaps 
randomly, then tells each player what her strategy is in the profile 
(but not what the other players’ strategies are)
A correlated equilibrium is a distribution over pure-strategy 
profiles so that every player wants to follow the recommendation 
of the mediator (if she assumes that the others do so as well)
Every Nash equilibrium is also a correlated equilibrium
• Corresponds to mediator choosing players’ recommendations 

independently
… but not vice versa
(Note: there are more general definitions of correlated 
equilibrium, but it can be shown that they do not allow you to do 
anything more than this definition.)

VC 48



C.E. FOR CHICKEN

Why is this a correlated equilibrium?

Suppose the mediator tells Row to Dodge
• From Row’s perspective, the conditional probability that Col was told to Dodge is 

20% / (20% + 40%) = 1/3
• So the expected utility of Dodging is (2/3)*(-1) = -2/3
• But the expected utility of Straight is (1/3)*1 + (2/3)*(-5) = -3
• So Row wants to follow the recommendation
If Row is told to go Straight, he knows that Col was told to Dodge, so again Row 
wants to follow the recommendation
Similar for Col

20%

40%

40%

0%

0, 0 -1, 1

1, -1 -5, -5
D
S

D S
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COMPLEXITY
Can compute minimax-optimal strategies in PTIME
Can compute 2-P zero-sum NE in PTIME
• (We’ll see this as an example during the convex optimization 

primer lecture next week.)
Can compute correlated equilibria in PTIME
Unknown if we can compute a 2-P general-sum NE in PTIME:
• Known: PPAD-complete (weaker than NP-c, and different)
• All known algorithms require worst-cast exponential time
Our first “meaty” lectures will cover security games, which 
try to find Stackelberg equilibria:
• Varying complexity, will discuss during those lectures

50



DOES NASH MODEL 
HUMAN BEHAVIOR?
Game: pick a number (let’s say, integer) in

{0, 1, 2, 3, …, 98, 99, 100}
Winner: person who picks number that is

closest to 2/3 of the average of all numbers
Example: if the average of all numbers is 54, your best 
answer would be 36 ( = 54 * 2/3) 

51
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DOES NASH MODEL 
HUMAN BEHAVIOR?
What’s the (Nash) equilibrium strategy?

“Level 0” humans: everyone picks randomly?  E[v] = 50, 
choose 50 * 2/3
“Level 1” humans: everyone picks 50 * 2/3, I’ll pick (50 * 2/3) * 
2/3
“Level 2” humans: I’ll pick ((50 * 2/3) * 2/3) * 2/3 …
N.E.: fixed point, “Level infinity”, pick 0 or 1 depending on 
constraints
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DOES NASH MODEL 
HUMAN BEHAVIOR?

Any guesses on behavior …?



54NY Times



NEXT CLASS:
MECHANISM DESIGN PRIMER
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