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PROJECT PROPOSALS
I’d like you to submit a 1-2 pager covering an initial plan for 
your course project by the end of next week (Fri March 12).
How to submit:
• Make a channel on Slack (public or private)

• Invite all group members + @John Dickerson

• Upload the PDF of your initial course project plan
• “@ me”

You will get 100% for this if you
submit something “okay” – this 
is just to kickstart (i) movement
and (ii) discussion between us
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PROJECT PROPOSALS: 
A SUGGESTION
Consider a 75%/100%/125% set of goalposts:
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[Thanks, Aya Ismail!  S2018 CMSC828M]



THIS CLASS: STACKELBERG & 
SECURITY GAMES

Thanks to: AGT book, Conitzer (VC), Gupta (NG), Procaccia (AP) 4



SIMULTANEOUS PLAY
Previously, assumed players would play simultaneously
• Two drivers simultaneously decide to go straight or divert
• Two prisoners simultaneously defect or cooperate
• Players simultaneously choose rock, paper, or scissors
• Etc …

No knowledge of the other players’ chosen actions

What if we allow sequential action selection ...?
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LEADER-FOLLOWER GAMES
Two players:
• The leader commits to acting in a specific way
• The follower observes the leader’s mixed strategy

What is the Nash equilibrium ????????
• Social welfare: 2
• Utility to row player: 1
Row player = leader; what to do ????????
• Social welfare: 3
• Utility to row player: 2

6

Heinrich von 
Stackelberg

1, 1 3, 0
0, 0 2, 1

NE, iterated strict dominance

Commit to “Bottom”



ASIDE: FIRST-MOVER 
ADVANTAGE (FMA)
From the econ side of things …
• Leader is sometimes called the Market Leader
• Some advantage allows a firm to move first:

• Technological breakthrough via R&D
• Buying up all assets at low price before market adjusts

By committing to a strategy (some amount of production), can 
effectively force other players’ hands.

Things we won’t model:
• Significant cost of R&D, uncertainty over market demand, initial 

marketing costs, etc.
These can lead to Second-Mover Advantage
• Atari vs Nintendo, MySpace (or earlier) vs Facebook
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COMMITMENT AS AN 
EXTENSIVE-FORM GAME
For the case of committing to a pure strategy:

Player 1

Player 2 Player 2

1, 1 3, 0 0, 0 2, 1

Up Down

Left Left RightRight

8VC

1, 1 3, 0
0, 0 2, 1



COMMITMENT TO MIXED 
STRATEGIES

1, 1 3, 0
0, 0 2, 1

.49

.51

0 1

Sometimes also called a Stackelberg (mixed) strategy

9VC

What should Column do ????????



COMMITMENT AS AN 
EXTENSIVE-FORM GAME…

For the case of committing to a mixed strategy:
Player 1

Player 2

1, 1 3, 0 0, 0 2, 1

(1,0) 
(=Up)

Left Left RightRight

.5, .5 2.5, .5

Left Right

(0,1) 
(=Down)

(.5,.5)

… …

• Economist: Just an extensive-form game …
• Computer scientist: Infinite-size game!  Representation matters

10VC



WHAT SHOULD THE 
LEADER COMMIT TO?
Special case: 2-player zero-sum normal-form games
Recall: Row player plays Minimax strategy
• Minimizes the maximum expected utility to the Col
• Minimax utility: minσ-i maxsi ui(si, σ-i)
Doesn’t matter who commits to what, when

Minimax strategies = Nash Equilibrium 
= Stackelberg Equilibrium
(not the case for general games)

Polynomial time computation via LP – earlier lectures

11
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WHAT SHOULD THE 
LEADER COMMIT TO?
Strong Stackelberg Equilibrium (SSE): follower breaks ties in 
favor of the leader
Theorem [Conitzer & Sandholm]: In 2-player, general-sum 
normal-form games, an SSE can be found in polytime
• ?????????????
Idea:
• Iterate over every follower pure strategy aka column c
• Compute a mixed strategy r for leader such that playing 

pure strategy c is a best response for follower
• Choose r*, the best (aka highest value for leader) mixed 

strategy amongst those strategies!

12[Conitzer & Sandholm, Computing the optimal strategy to commit to, EC-06]

2-P 
G-S



WHAT SHOULD THE 
LEADER COMMIT TO?
Separate LP for every column c*:

maximize Σr pr uR(r, c*)
s.t.
for all c, Σr pr uC(r, c*) ≥ Σr pr uC(r, c)
Σr pr = 1
for all r, pr > 0

Choose strategy from LP with highest objective

13

Row utility

Distributional 
constraints

Column optimality 
aka Col best response

[Conitzer & Sandholm, Computing the optimal strategy to commit to, EC-06]

2-P 
G-S



RUNNING EXAMPLE

1, 1 3, 0
0, 0 2, 1

14

maximize 1x + 0y

s.t.

1x + 0y ≥ 0x + 1y 

x + y = 1

x ≥ 0

y ≥ 0

maximize 3x + 2y

s.t.

0x + 1y ≥ 1x + 0y 

x + y = 1

x ≥ 0

y ≥ 0

x

y

VC



IS COMMITMENT ALWAYS 
GOOD FOR THE LEADER?
Yes, if we allow commitment to mixed strategies
• Always weakly better to commit [von Stengel & Zamir, 2004]   ??????
• If (r*, c) is Nash, then Row can always commit to r* à Col will 

play c*, can achieve value of that equilibrium

What about only pure strategies?
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Rock Paper Scissors

Rock 0,0 -1,+1 +1,-1
Paper +1,-1 0,0 -1,+1

Scissors -1,+1 +1,-1 0,0

Expected utility to Row 
by playing mixed Nash:

???????????

Expected utility to Row by 
any pure commitment:

???????????

ER[ <1/3,1/3,1/3> ] = 0 

ER[ <1,0,0> ] = -1 
ER[ <0,1,0> ] = -1 
ER[ <0,0,1> ] = -1 



WHAT SHOULD THE 
LEADER COMMIT TO?
Bayesian games: player i draws type θi from Θ
Special case: follower has only one type, leader has type θ

Like before, solve a separate LP for every column c*:

maximize Σθπ(θ) Σr pr,θ uR,θ(r, c*)
s.t.
for all c, Σθπ(θ) Σr pr,θ uC(r, c*) ≥ Σθπ(θ) Σr pr,θ uC(r, c)
for all θ, Σr pr,θ = 1
for all r,θ, pr,θ > 0

Choose strategy from LP with highest objective

16

Bayesian 
2-P G-S



WHAT SHOULD THE 
LEADER COMMIT TO?
So, we showed polynomial-time methods for:
• 2-Player, zero-sum
• 2-Player, general-sum
• 2-Player, general-sum, Bayesian with 1-type follower
In general, NP-hard to compute:
• 2-Player, general-sum, Bayesian with 1-type leader

• Arguably more interesting (“I know my own type”)
• 2-Player, general-sum, Bayesian general
• N-Player, for N > 2:

• 1st player commits, N-1-Player leader-follower game, 2nd

player commits, recurse until 2-Player leader-follower

17

Bayesian 
N-P G-S



STACKELBERG
SECURITY GAMES
Leader-follower à Defender-attacker
• Defender is interested in protecting a set of targets
• Attacker wants to attack the targets
The defender is endowed with a set of resources 
• Resources protect the targets and prevent attacks
Utilities:
• Defender receives positive utility for preventing attacks, 

negative utility for “successful” attacks
• Attacker: positive utility for successful attacks, negative 

otherwise
• Not necessarily zero-sum

18



SECURITY GAMES:
A FORMAL MODEL
Defined by a 3-tuple (N, U, M):
• N: set of n targets
• U: utilities associated with defender and attacker
• M: all subsets of targets that can be simultaneously defended 

by deployments of resources
• A schedule S ⊆ 2N is the set of target defended by a single 

resource r
• Assignment function A : R à 2S is the set of all schedules a 

specific resource can support
• Then we have m pure strategies, assigning resources such 

that the union of their target coverage is in M
• Utility uc,d(i) and uu,d(i) for the defender when target i is 

attacked and is covered or defended, respectively

19



SIMPLE EXAMPLE

20[Blum, Haghtalab, Procaccia, Learning to Play Stackelberg Security Games, 2016]

R

Resources

1

2

Targets

i uc,d(i) uu,d(i) uc,a(i) uu,a(i) uc,a(i) uu,a(i)

1 0 -1 0 +1 0 +1

2 0 -2 0 +5 0 +1

Targets Defender Attacker Type θ1 Attacker Type θ2



REAL-WORLD 
SECURITY GAMES
Lots of deployed applications!
• Checkpoints at airports
• Patrol routes in harbors
• Scheduling Federal Air Marshalls
• Patrol routes for anti-poachers

Typically solve for strong Stackelberg Equilibria:
• Tie break in favor of the defender; always exists
• Can often “nudge” the adversary in practice
Two big practical problems: computation and uncertainty

21



OVERVIEW OF AN IMPACTFUL 
PAPER IN THIS SPACE
Computing Optimal Randomized Resource Allocations for 
Massive Security Games (linked on course webpage)
• Motivated first by resource assignment for checkpoints at LAX, 

e.g., multiple canine units assigned to cover multiple terminals …
• … and later by much larger games such as Federal Air Marshals 

Service assignments and port inspection.
m resources to cover n targets, m < n
Defender (leader) commits to a mixed strategy
Attacker (follower) observes the probabilities for each coverage 
set
• Surveillance, insider threat, etc – maybe not perfectly realistic
Attacker chooses a pure strategy 
Equilibrium concept not ex post

22

[Kiekintveld et al. 2009]



OVERVIEW OF AN IMPACTFUL 
PAPER IN THIS SPACE
Initially assume interchangeable resources (extended in 
paper, will cover in a few slides by introducing “types”)
Assume players are risk neutral
One type of follower (attacker)
• Recall: one type of follower à PTIME solvable, one LP solved 

for each pure strategy of follower …

• … but the number of pure strategies in some games might be 
large, e.g., with 100 targets and 10 resources, 1.7 x 1013!

23

[Kiekintveld et al. 2009]



RUNNING EXAMPLE
4 targets, 2 resources
Qualitatively:

• Defender values all 4 targets equally (and prefers a covered 
attack to an uncovered attack).

• Attacker gets twice as much utility for successful attack on 
target 3. All failed attacks get the same (lower) utility.

24NG

1 2 3 4



MOTIVATION AND 
INTRODUCTION

25

Targets {1, 2, 4}

Covered Uncovered

Defender 4 1

Attacker 0 1

Target 3

Covered Uncovered

Defender 4 1

Attacker 0 2

1 2 3 4

Equations to copy to powerpoint

Neal Gupta

uc
⇥(3)

uu
⇥(3)

uc
 (3)

uu
 (3)

1

Equations to copy to powerpoint

Neal Gupta

uc
⇥(3)

uu
⇥(3)

uc
 (3)

uu
 (3)

1

“Utility for leader θ if the 
target 3 is attacked and it is 
covered (c) or uncovered (u)”

Equations to copy to powerpoint

Neal Gupta

uc
⇥(3)

uu
⇥(3)

uc
 (3)

uu
 (3)

1

Equations to copy to powerpoint

Neal Gupta

uc
⇥(3)

uu
⇥(3)

uc
 (3)

uu
 (3)

1

“Utility for follower Ψ if 
attacks target 3 and it is 
covered (c) / uncovered (u)”



COMPACT REPRESENTATIONS OF 
SECURITY GAMES—EXTENSIVE 
FORM IS TOO BIG!
Defender commits to a mixed strategy (one of uncountably 
many, i.e., EFG tree will be infinite size)

Attacker strategy is an efficient algorithm, which given any
mixed strategy, D, computes target

Where optimization is taken over the attack set Γ(D), the set 
of targets yielding max expected payoff for attacker given D

26
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In general, size
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COMPACT REPRESENTATIONS 
OF SECURITY GAMES
Key insight: the only information needed to represent the 
defender strategy is the probabilities a target is covered

This gives us a coverage vector C
• Running example: C = [c1, c2, c3, c4]

ERASER (Efficient Randomized Allocation of SEcurity Resources) takes 
security game & computes C that is SSE for defender

27

In our 2 resources, 4 
targets example: 
probability c1 that 
target 1 is covered is 
sum of all pure 
strategies that cover 1 



ERASER 
FORMULATION

28

range [0, 1], and Equation 9 constraints the coverage by the num-
ber of available resources.

In Equations 10 and 11, Z is a large constant relative to the
maximum payoff value. Equation 10 defines the defender’s ex-
pected payoff, contingent on the target attacked in A. The con-
straint places an upper bound of U⇥(t, C) on d, but only for the
attacked target. For all other targets, the RHS is arbitrarily large.
Since the objective maximizes d, for any optimal solution d =
U⇥(C, A). This also implies that C is maximal, given A for any
optimal solution, since d is maximized.

In a similar way, Equation 11 forces the attacker to select a strat-
egy in the attack set of C. The first part of the constraint specifies
that k � U (t, C) � 0, which implies that k must be at least as
large as the maximal payoff for attacking any target. The second
part forces k � U (t, C)  0 for any target that is attacked in A.
If the attack vector specifies a target that is not maximal, this con-
straint is violated. Taken together, the objective and Equations 10–
11 imply that C and A are mutual best-responses in any optimal
solution.

max d (5)
at 2 {0, 1} 8t 2 T (6)

X

t2T

at = 1 (7)

ct 2 [0, 1] 8t 2 T (8)
X

t2T

ct  m (9)

d� U⇥(t, C)  (1� at) · Z 8t 2 T (10)
0  k � U (t, C)  (1� at) · Z 8t 2 T (11)

We now show that an optimal solution to the ERASER MILP
corresponds to a SSE of the security game. First we show that the
legal coverage vectors can be implemented by mixed strategies, and
then show how full a full SSE can be constructed from an optimal
ERASER solution.

THEOREM 1. For any feasible ERASER coverage vector, there
is a corresponding mixed strategy �⇥ that implements the desired
coverage probabilities.

Proof sketch: Translating C into a mixed strategy involves solv-
ing a set of n linear equations with

`
n
m

´
variables; in practice, we

use a linear program. The claim is trivial when m = 1, since each
pure strategy maps directly to a target. In the general case, we must
map the feasible set of ERASER coverage vectors to the feasible
set of the mixed strategies �⇥. We provide the intuition for this
mapping here. Each pure strategy �⇥ can be represented by an
m-dimensional indicator vector that selects m out of the possible
n targets. The full set of pure strategies ⌃⇥ consists of the

`
n
m

´

indicator vectors of this form. The set of possible mixed strate-
gies for the normal-form game is �⇥, defined by valid probability
distributions over ⌃⇥.

Now, let PE be the polyhedron defined by the solution space of
the ERASER coverage vector. We show that all extreme points of
PE are in �⇥, which implies that PE is a subset of the polyhedron
defined over �⇥. The extreme points of PE are defined by n lin-
early independent equality constraints. Since they have to satisfyPn

i=1 ci = m, n � 1 of the constraints 0  ci  1 must be tight,
so n� 1 of the ci variables are either 0 or 1. Since m is an integer,
the other variable must also be either 0 or 1. This implies that ex-
actly m of the ci = 1 and the rest of ci = 0 for any extreme point
of PE . This c vector is therefore one of the pure strategies �⇥ that

define the extreme points of �⇥, proving the inclusion. We can
similarly argue the other direction, proving equivalence of the fea-
sibility sets. If ERASER has a valid solution, we will be able to
find a corresponding mixed strategy.

THEOREM 2. A pair of attack and coverage vectors (C, A) is
optimal for the ERASER MILP correspond to at least one SSE of
the game.

PROOF. We claim above that C corresponds to a mixed strategy
for the defender, but A is an incomplete description of the attacker’s
Stackelberg strategy F ; it does not specify choices for any cover-
age other than C. Here we show that the conditions of the MILP
imply the existence of a function F extending A such that C and
F satisfy the conditions of SSE given in Definition 1. We have al-
ready shown above that C and A are mutual best-responses for an
optimal MILP solution. It remains to describe the attacker’s behav-
ior off the equilibrium path, for any other feasible coverage vectors
C0 6= C. Let t⇤ 2 �(C0) be a target in the attack set for C0 with
maximal payoff for the defender, and let A0 be the attack vector
which places probability 1 on t⇤. By construction, A0 is feasible in
the MILP and satisfies conditions 2 and 3 for a SSE. Since (C0, A0)
is a feasible solution in the MILP, U⇥(C0, A0)  U⇥(C, A) since
(C, A) is optimal for the MILP. Let F be a function constructed
using this method for every possible C0 6= C. C is a best-response
to F since U⇥(C0, A0)  U⇥(C, A), satisfying condition 1 of the
SSE.

5. EXPLOITING PAYOFF STRUCTURE
We now consider a class of security games in which the de-

fender always benefits by having additional resources covering an
attacked target, while the attacker is always worse off attacking a
more heavily defended target. These assumptions are quite reason-
able in many security games. Formally, we restrict payoff functions
so that Uu

⇥(t) < Uc
⇥(t) and Uu

 (t) > Uc
 (t) for all t (note the strict

inequalities). This is similar in spirit to a zero-sum assumption, but
somewhat less restrictive. It is well-known that zero-sum games of-
ten admit more efficient solution algorithms, such as Luce’s poly-
nomial method for 2-player, zero-sum games [9]. We introduce two
algorithms that compute extremely fast solutions for security games
with this restriction on payoffs by exploiting structural properties
of the optimal solution. We begin with three observations about the
properties of the optimal solution for this class of games.

OBSERVATION 1. All else equal, increasing ct for any target
not in �(C) has no effect on Û⇥(C) or Û (C).

Increasing ct can only decrease U (t, C) (due to the payoff as-
sumption), and cannot affect the payoffs for any other target. Since
t was not in �(C) before, decreasing the payoff cannot result in a
change to �(C), and therefore cannot influence the SSE payoffs.

OBSERVATION 2. If �(C) ⇢ �(C0) and ct = c0t for all t 2
�(C) then Û⇥(C)  Û⇥(C0).

In other words, adding an additional target to the attack set can-
not hurt the defender. This is a straightforward consequence of
the SSE assumption that the defender receives the optimal payoff
among targets in the attack set.

OBSERVATION 3. If Û (C) = x, then ct � x�Uu
 (t)

Uc
 (t)�Uu

 (t) for
every target t with Uu

 (t) > x.

Attacker can 
assign mass to 
exactly one target

international flight each day, FAMs lacks the resources to cover
all flights and deployments must be risk-based. However, even the
possibility that a FAM could on any given flight is a powerful de-
terrent for terrorist activities. The effectiveness of this deterrence
depends on the ability of the FAMS to randomize the flight sched-
ules for air marshals. If a terrorist adversary were able to reliably
predict which flights will not have marshals, the deterrence effect
would be reduced.

Flights should not necessarily have equal weighting in a random-
ized schedule. While information about how flight risks are evalu-
ated is not public, it is easy to imagine that many factors contribute
to the evaluation, ranging from specific intelligence to general risk
factors. A game-theoretic approach is ideal for creating a random-
ized schedule that incorporates these risk factors. However, cre-
ating such a schedule is significantly more daunting than even the
LAX problem. There are thousands of flights each day, departing
from hundreds of airports worldwide, and a multiplicity of air mar-
shals to schedule. Moreover, there are scheduling constraints that
must be considered in generating an allocation. An individual air
marshal’s potential departures are constrained by their current lo-
cation, and schedules must account for flight and transition times.
The algorithms we develop in the sequel are motivated by these
challenges.

4. A COMPACT REPRESENTATION FOR
MULTIPLE RESOURCES

Many security domains–including both LAX and FAMS–involve
allocating multiple resources to cover many potential targets. They
can be represented in normal form, but only at the cost of a combi-
natorial explosion in the size of the strategy space and payoff rep-
resentation. We develop a compact representation for multiple re-
sources and introduce an algorithm that exploits this representation.
Our approach is similar in spirit to other compact representations
for games [7, 6], but tailored to security domains.

4.1 Compact Security Game Model
Let T = {t1, . . . , tn} be a set of targets that may be attacked,

corresponding to pure strategies for the attacker. The defender has a
set of resources available to cover these targets, R = {r1, . . . , rm}
(for example, in the FAMS domain targets could be flights and air
marshals modeled as resources). Here we assume that all resources
are identical and may be assigned to any target, but relax these as-
sumptions in Section 6. Associated with each target are four pay-
offs defining the possible outcomes for an attack on the target, as
shown in Table 1. There are two cases, depending on whether or
not the target is covered by the defender. The defender’s payoff
for an uncovered attack is denoted Uu

⇥(t), and for a covered attack
Uc
⇥(t). Similarly, Uu

 (t) and Uc
 (t) are the attacker’s payoffs.

Table 1: Example payoffs for an attack on a target.
Covered Uncovered

Defender 5 –20
Attacker –10 30

A crucial feature of the model is that payoffs depend only on
the identity of the attacked target and whether or not it is covered
by the defender. For example, it does not matter whether or not
any unattacked target is covered or not. From a payoff perspective,
many resource allocations are identical. We exploit this by sum-
marizing the payoff-relevant aspects of the defender’s strategy in
a coverage vector, C, that gives the probability that each target is

covered, ct. The analogous attack vector A gives the probability of
attacking a target, which in the sequel we restrict to attack a single
target with probability 1 (without loss of generality because a SSE
solution still exists). The defender’s expected payoff given attack
and coverage vectors is shown in Equation 1. Equation 2 gives the
expected payoff for an attack on target t, given C. The same nota-
tion applies for the follower, replacing ⇥ with  . We also define
the useful notion of the attack set, �(C), which contains all tar-
gets that yield the maximum expected payoff for the attacker given
coverage C.

U⇥(C, A) =
X

t2T

at · (ct · Uc
⇥(t) + (1� ct)U

u
⇥(t)) (1)

U⇥(t, C) = ctU
c
⇥(t) + (1� ct)U

u
⇥(t) (2)

�(C) = {t : U (t, C) � U (t0, C) 8 t0 2 T}. (3)

In a strong Stackelberg equilibrium, the attacker selects the target
in the attack set with maximum payoff for the defender. Let t⇤

denote this optimal target. Then the expected SSE payoff for the
defender is Û⇥(C) = U⇥(t⇤, C), and for the attacker Û (C) =
U (t⇤, C).

4.2 Compact Versus Normal Form
Any security game represented in this compact form can also

be represented in normal form. The attack vector A maps directly
to the attacker’s pure strategies, with one strategy per target. For
the defender, each possible allocation of resources corresponds to a
pure strategy in the normal form. A resource allocation maps each
available resource to a target, so there are n Choose m ways to
allocate m resources to n targets (assuming at most one resource
is assigned to a target). Equation set 4 gives an example of how a
coverage vector corresponds to a mixed strategy, for two resources
and four targets. �i,j

⇥ is the probability assigned to a pure strategy
covering targets i and j. The first row states that the probability
of covering target 1 is the sum of the probability assigned to pure
strategies that cover 1.

�1,2
⇥ + �1,3

⇥ + �1,4
⇥ = c1

�1,2
⇥ + �2,3

⇥ + �2,4
⇥ = c2

�1,3
⇥ + �2,3

⇥ + �3,4
⇥ = c3

�1,4
⇥ + �2,4

⇥ + �3,4
⇥ = c4 (4)

The payoff function ⌦⇥ for the defender defines a payoff for
each combination of a resource allocation schedule and target. If
the target is covered by the allocation, the value is Uc

⇥, and if not it
is Uu

⇥. The attacker payoff function is defined similarly. Compar-
ing the size of the strategies and payoff functions in these alterna-
tive representations is striking. In the compact form, each strategy
is represented by n continuous variables, and the payoff function
by 4n variables. In contrast, the defender’s strategy in normal form
requires nChoosem variables, while the attacker strategy remains
the same. The payoff function is of size n · (n Choose m).

4.3 ERASER Solution Algorithm
The ERASER algorithm (Efficient Randomized Allocation of

SEcurity Resources) takes as input a security game in compact
form and solves for an optimal coverage vector corresponding to
a SSE strategy for the defender. The algorithm is a mixed-integer
linear program (MILP), presented in Equations 5–11. Equations 6
and 7 force the attack vector to assign a single target probability
1. Equation 8 restricts the coverage vector to probabilities in the

Defender applies 
valid (aka at most 
m) probability 
mass over targets

(Theorem in paper 
states how to convert 
coverage vector to 
mixed strategy)



ERASER 
FORMULATION

Determine the 
defender’s expected 
payoff d, given the 
target attacked (at)
• For unattacked

targets (at=0), RHS 
is huge (i.e., Z)

• For attacked target 
(at=1), RHS is 0 à
d = utility of 
defender given t 
attacked, and 
coverage vector C

Objective: maximize d
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range [0, 1], and Equation 9 constraints the coverage by the num-
ber of available resources.

In Equations 10 and 11, Z is a large constant relative to the
maximum payoff value. Equation 10 defines the defender’s ex-
pected payoff, contingent on the target attacked in A. The con-
straint places an upper bound of U⇥(t, C) on d, but only for the
attacked target. For all other targets, the RHS is arbitrarily large.
Since the objective maximizes d, for any optimal solution d =
U⇥(C, A). This also implies that C is maximal, given A for any
optimal solution, since d is maximized.

In a similar way, Equation 11 forces the attacker to select a strat-
egy in the attack set of C. The first part of the constraint specifies
that k � U (t, C) � 0, which implies that k must be at least as
large as the maximal payoff for attacking any target. The second
part forces k � U (t, C)  0 for any target that is attacked in A.
If the attack vector specifies a target that is not maximal, this con-
straint is violated. Taken together, the objective and Equations 10–
11 imply that C and A are mutual best-responses in any optimal
solution.

max d (5)
at 2 {0, 1} 8t 2 T (6)

X

t2T

at = 1 (7)

ct 2 [0, 1] 8t 2 T (8)
X

t2T

ct  m (9)

d� U⇥(t, C)  (1� at) · Z 8t 2 T (10)
0  k � U (t, C)  (1� at) · Z 8t 2 T (11)

We now show that an optimal solution to the ERASER MILP
corresponds to a SSE of the security game. First we show that the
legal coverage vectors can be implemented by mixed strategies, and
then show how full a full SSE can be constructed from an optimal
ERASER solution.

THEOREM 1. For any feasible ERASER coverage vector, there
is a corresponding mixed strategy �⇥ that implements the desired
coverage probabilities.

Proof sketch: Translating C into a mixed strategy involves solv-
ing a set of n linear equations with

`
n
m

´
variables; in practice, we

use a linear program. The claim is trivial when m = 1, since each
pure strategy maps directly to a target. In the general case, we must
map the feasible set of ERASER coverage vectors to the feasible
set of the mixed strategies �⇥. We provide the intuition for this
mapping here. Each pure strategy �⇥ can be represented by an
m-dimensional indicator vector that selects m out of the possible
n targets. The full set of pure strategies ⌃⇥ consists of the

`
n
m

´

indicator vectors of this form. The set of possible mixed strate-
gies for the normal-form game is �⇥, defined by valid probability
distributions over ⌃⇥.

Now, let PE be the polyhedron defined by the solution space of
the ERASER coverage vector. We show that all extreme points of
PE are in �⇥, which implies that PE is a subset of the polyhedron
defined over �⇥. The extreme points of PE are defined by n lin-
early independent equality constraints. Since they have to satisfyPn

i=1 ci = m, n � 1 of the constraints 0  ci  1 must be tight,
so n� 1 of the ci variables are either 0 or 1. Since m is an integer,
the other variable must also be either 0 or 1. This implies that ex-
actly m of the ci = 1 and the rest of ci = 0 for any extreme point
of PE . This c vector is therefore one of the pure strategies �⇥ that

define the extreme points of �⇥, proving the inclusion. We can
similarly argue the other direction, proving equivalence of the fea-
sibility sets. If ERASER has a valid solution, we will be able to
find a corresponding mixed strategy.

THEOREM 2. A pair of attack and coverage vectors (C, A) is
optimal for the ERASER MILP correspond to at least one SSE of
the game.

PROOF. We claim above that C corresponds to a mixed strategy
for the defender, but A is an incomplete description of the attacker’s
Stackelberg strategy F ; it does not specify choices for any cover-
age other than C. Here we show that the conditions of the MILP
imply the existence of a function F extending A such that C and
F satisfy the conditions of SSE given in Definition 1. We have al-
ready shown above that C and A are mutual best-responses for an
optimal MILP solution. It remains to describe the attacker’s behav-
ior off the equilibrium path, for any other feasible coverage vectors
C0 6= C. Let t⇤ 2 �(C0) be a target in the attack set for C0 with
maximal payoff for the defender, and let A0 be the attack vector
which places probability 1 on t⇤. By construction, A0 is feasible in
the MILP and satisfies conditions 2 and 3 for a SSE. Since (C0, A0)
is a feasible solution in the MILP, U⇥(C0, A0)  U⇥(C, A) since
(C, A) is optimal for the MILP. Let F be a function constructed
using this method for every possible C0 6= C. C is a best-response
to F since U⇥(C0, A0)  U⇥(C, A), satisfying condition 1 of the
SSE.

5. EXPLOITING PAYOFF STRUCTURE
We now consider a class of security games in which the de-

fender always benefits by having additional resources covering an
attacked target, while the attacker is always worse off attacking a
more heavily defended target. These assumptions are quite reason-
able in many security games. Formally, we restrict payoff functions
so that Uu

⇥(t) < Uc
⇥(t) and Uu

 (t) > Uc
 (t) for all t (note the strict

inequalities). This is similar in spirit to a zero-sum assumption, but
somewhat less restrictive. It is well-known that zero-sum games of-
ten admit more efficient solution algorithms, such as Luce’s poly-
nomial method for 2-player, zero-sum games [9]. We introduce two
algorithms that compute extremely fast solutions for security games
with this restriction on payoffs by exploiting structural properties
of the optimal solution. We begin with three observations about the
properties of the optimal solution for this class of games.

OBSERVATION 1. All else equal, increasing ct for any target
not in �(C) has no effect on Û⇥(C) or Û (C).

Increasing ct can only decrease U (t, C) (due to the payoff as-
sumption), and cannot affect the payoffs for any other target. Since
t was not in �(C) before, decreasing the payoff cannot result in a
change to �(C), and therefore cannot influence the SSE payoffs.

OBSERVATION 2. If �(C) ⇢ �(C0) and ct = c0t for all t 2
�(C) then Û⇥(C)  Û⇥(C0).

In other words, adding an additional target to the attack set can-
not hurt the defender. This is a straightforward consequence of
the SSE assumption that the defender receives the optimal payoff
among targets in the attack set.

OBSERVATION 3. If Û (C) = x, then ct � x�Uu
 (t)

Uc
 (t)�Uu

 (t) for
every target t with Uu

 (t) > x.

international flight each day, FAMs lacks the resources to cover
all flights and deployments must be risk-based. However, even the
possibility that a FAM could on any given flight is a powerful de-
terrent for terrorist activities. The effectiveness of this deterrence
depends on the ability of the FAMS to randomize the flight sched-
ules for air marshals. If a terrorist adversary were able to reliably
predict which flights will not have marshals, the deterrence effect
would be reduced.

Flights should not necessarily have equal weighting in a random-
ized schedule. While information about how flight risks are evalu-
ated is not public, it is easy to imagine that many factors contribute
to the evaluation, ranging from specific intelligence to general risk
factors. A game-theoretic approach is ideal for creating a random-
ized schedule that incorporates these risk factors. However, cre-
ating such a schedule is significantly more daunting than even the
LAX problem. There are thousands of flights each day, departing
from hundreds of airports worldwide, and a multiplicity of air mar-
shals to schedule. Moreover, there are scheduling constraints that
must be considered in generating an allocation. An individual air
marshal’s potential departures are constrained by their current lo-
cation, and schedules must account for flight and transition times.
The algorithms we develop in the sequel are motivated by these
challenges.

4. A COMPACT REPRESENTATION FOR
MULTIPLE RESOURCES

Many security domains–including both LAX and FAMS–involve
allocating multiple resources to cover many potential targets. They
can be represented in normal form, but only at the cost of a combi-
natorial explosion in the size of the strategy space and payoff rep-
resentation. We develop a compact representation for multiple re-
sources and introduce an algorithm that exploits this representation.
Our approach is similar in spirit to other compact representations
for games [7, 6], but tailored to security domains.

4.1 Compact Security Game Model
Let T = {t1, . . . , tn} be a set of targets that may be attacked,

corresponding to pure strategies for the attacker. The defender has a
set of resources available to cover these targets, R = {r1, . . . , rm}
(for example, in the FAMS domain targets could be flights and air
marshals modeled as resources). Here we assume that all resources
are identical and may be assigned to any target, but relax these as-
sumptions in Section 6. Associated with each target are four pay-
offs defining the possible outcomes for an attack on the target, as
shown in Table 1. There are two cases, depending on whether or
not the target is covered by the defender. The defender’s payoff
for an uncovered attack is denoted Uu

⇥(t), and for a covered attack
Uc
⇥(t). Similarly, Uu

 (t) and Uc
 (t) are the attacker’s payoffs.

Table 1: Example payoffs for an attack on a target.
Covered Uncovered

Defender 5 –20
Attacker –10 30

A crucial feature of the model is that payoffs depend only on
the identity of the attacked target and whether or not it is covered
by the defender. For example, it does not matter whether or not
any unattacked target is covered or not. From a payoff perspective,
many resource allocations are identical. We exploit this by sum-
marizing the payoff-relevant aspects of the defender’s strategy in
a coverage vector, C, that gives the probability that each target is

covered, ct. The analogous attack vector A gives the probability of
attacking a target, which in the sequel we restrict to attack a single
target with probability 1 (without loss of generality because a SSE
solution still exists). The defender’s expected payoff given attack
and coverage vectors is shown in Equation 1. Equation 2 gives the
expected payoff for an attack on target t, given C. The same nota-
tion applies for the follower, replacing ⇥ with  . We also define
the useful notion of the attack set, �(C), which contains all tar-
gets that yield the maximum expected payoff for the attacker given
coverage C.

U⇥(C, A) =
X

t2T

at · (ct · Uc
⇥(t) + (1� ct)U

u
⇥(t)) (1)

U⇥(t, C) = ctU
c
⇥(t) + (1� ct)U

u
⇥(t) (2)

�(C) = {t : U (t, C) � U (t0, C) 8 t0 2 T}. (3)

In a strong Stackelberg equilibrium, the attacker selects the target
in the attack set with maximum payoff for the defender. Let t⇤

denote this optimal target. Then the expected SSE payoff for the
defender is Û⇥(C) = U⇥(t⇤, C), and for the attacker Û (C) =
U (t⇤, C).

4.2 Compact Versus Normal Form
Any security game represented in this compact form can also

be represented in normal form. The attack vector A maps directly
to the attacker’s pure strategies, with one strategy per target. For
the defender, each possible allocation of resources corresponds to a
pure strategy in the normal form. A resource allocation maps each
available resource to a target, so there are n Choose m ways to
allocate m resources to n targets (assuming at most one resource
is assigned to a target). Equation set 4 gives an example of how a
coverage vector corresponds to a mixed strategy, for two resources
and four targets. �i,j

⇥ is the probability assigned to a pure strategy
covering targets i and j. The first row states that the probability
of covering target 1 is the sum of the probability assigned to pure
strategies that cover 1.

�1,2
⇥ + �1,3

⇥ + �1,4
⇥ = c1

�1,2
⇥ + �2,3

⇥ + �2,4
⇥ = c2

�1,3
⇥ + �2,3

⇥ + �3,4
⇥ = c3

�1,4
⇥ + �2,4

⇥ + �3,4
⇥ = c4 (4)

The payoff function ⌦⇥ for the defender defines a payoff for
each combination of a resource allocation schedule and target. If
the target is covered by the allocation, the value is Uc

⇥, and if not it
is Uu

⇥. The attacker payoff function is defined similarly. Compar-
ing the size of the strategies and payoff functions in these alterna-
tive representations is striking. In the compact form, each strategy
is represented by n continuous variables, and the payoff function
by 4n variables. In contrast, the defender’s strategy in normal form
requires nChoosem variables, while the attacker strategy remains
the same. The payoff function is of size n · (n Choose m).

4.3 ERASER Solution Algorithm
The ERASER algorithm (Efficient Randomized Allocation of

SEcurity Resources) takes as input a security game in compact
form and solves for an optimal coverage vector corresponding to
a SSE strategy for the defender. The algorithm is a mixed-integer
linear program (MILP), presented in Equations 5–11. Equations 6
and 7 force the attack vector to assign a single target probability
1. Equation 8 restricts the coverage vector to probabilities in the

Expected utility to leader given attack on t 
and coverage vector with coverage ct



ERASER 
FORMULATION

Two bottom sets of 
constraints imply that 
defender’s coverage 
vector C is best 
response to attack 
vector A, & vice versa
à Strong Stackelberg
Equilibrium
“Big M” (or in this 
case “Big Z”) style of 
constraints are a 
common way to 
encode if statements
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range [0, 1], and Equation 9 constraints the coverage by the num-
ber of available resources.

In Equations 10 and 11, Z is a large constant relative to the
maximum payoff value. Equation 10 defines the defender’s ex-
pected payoff, contingent on the target attacked in A. The con-
straint places an upper bound of U⇥(t, C) on d, but only for the
attacked target. For all other targets, the RHS is arbitrarily large.
Since the objective maximizes d, for any optimal solution d =
U⇥(C, A). This also implies that C is maximal, given A for any
optimal solution, since d is maximized.

In a similar way, Equation 11 forces the attacker to select a strat-
egy in the attack set of C. The first part of the constraint specifies
that k � U (t, C) � 0, which implies that k must be at least as
large as the maximal payoff for attacking any target. The second
part forces k � U (t, C)  0 for any target that is attacked in A.
If the attack vector specifies a target that is not maximal, this con-
straint is violated. Taken together, the objective and Equations 10–
11 imply that C and A are mutual best-responses in any optimal
solution.

max d (5)
at 2 {0, 1} 8t 2 T (6)

X

t2T

at = 1 (7)

ct 2 [0, 1] 8t 2 T (8)
X

t2T

ct  m (9)

d� U⇥(t, C)  (1� at) · Z 8t 2 T (10)
0  k � U (t, C)  (1� at) · Z 8t 2 T (11)

We now show that an optimal solution to the ERASER MILP
corresponds to a SSE of the security game. First we show that the
legal coverage vectors can be implemented by mixed strategies, and
then show how full a full SSE can be constructed from an optimal
ERASER solution.

THEOREM 1. For any feasible ERASER coverage vector, there
is a corresponding mixed strategy �⇥ that implements the desired
coverage probabilities.

Proof sketch: Translating C into a mixed strategy involves solv-
ing a set of n linear equations with

`
n
m

´
variables; in practice, we

use a linear program. The claim is trivial when m = 1, since each
pure strategy maps directly to a target. In the general case, we must
map the feasible set of ERASER coverage vectors to the feasible
set of the mixed strategies �⇥. We provide the intuition for this
mapping here. Each pure strategy �⇥ can be represented by an
m-dimensional indicator vector that selects m out of the possible
n targets. The full set of pure strategies ⌃⇥ consists of the

`
n
m

´

indicator vectors of this form. The set of possible mixed strate-
gies for the normal-form game is �⇥, defined by valid probability
distributions over ⌃⇥.

Now, let PE be the polyhedron defined by the solution space of
the ERASER coverage vector. We show that all extreme points of
PE are in �⇥, which implies that PE is a subset of the polyhedron
defined over �⇥. The extreme points of PE are defined by n lin-
early independent equality constraints. Since they have to satisfyPn

i=1 ci = m, n � 1 of the constraints 0  ci  1 must be tight,
so n� 1 of the ci variables are either 0 or 1. Since m is an integer,
the other variable must also be either 0 or 1. This implies that ex-
actly m of the ci = 1 and the rest of ci = 0 for any extreme point
of PE . This c vector is therefore one of the pure strategies �⇥ that

define the extreme points of �⇥, proving the inclusion. We can
similarly argue the other direction, proving equivalence of the fea-
sibility sets. If ERASER has a valid solution, we will be able to
find a corresponding mixed strategy.

THEOREM 2. A pair of attack and coverage vectors (C, A) is
optimal for the ERASER MILP correspond to at least one SSE of
the game.

PROOF. We claim above that C corresponds to a mixed strategy
for the defender, but A is an incomplete description of the attacker’s
Stackelberg strategy F ; it does not specify choices for any cover-
age other than C. Here we show that the conditions of the MILP
imply the existence of a function F extending A such that C and
F satisfy the conditions of SSE given in Definition 1. We have al-
ready shown above that C and A are mutual best-responses for an
optimal MILP solution. It remains to describe the attacker’s behav-
ior off the equilibrium path, for any other feasible coverage vectors
C0 6= C. Let t⇤ 2 �(C0) be a target in the attack set for C0 with
maximal payoff for the defender, and let A0 be the attack vector
which places probability 1 on t⇤. By construction, A0 is feasible in
the MILP and satisfies conditions 2 and 3 for a SSE. Since (C0, A0)
is a feasible solution in the MILP, U⇥(C0, A0)  U⇥(C, A) since
(C, A) is optimal for the MILP. Let F be a function constructed
using this method for every possible C0 6= C. C is a best-response
to F since U⇥(C0, A0)  U⇥(C, A), satisfying condition 1 of the
SSE.

5. EXPLOITING PAYOFF STRUCTURE
We now consider a class of security games in which the de-

fender always benefits by having additional resources covering an
attacked target, while the attacker is always worse off attacking a
more heavily defended target. These assumptions are quite reason-
able in many security games. Formally, we restrict payoff functions
so that Uu

⇥(t) < Uc
⇥(t) and Uu

 (t) > Uc
 (t) for all t (note the strict

inequalities). This is similar in spirit to a zero-sum assumption, but
somewhat less restrictive. It is well-known that zero-sum games of-
ten admit more efficient solution algorithms, such as Luce’s poly-
nomial method for 2-player, zero-sum games [9]. We introduce two
algorithms that compute extremely fast solutions for security games
with this restriction on payoffs by exploiting structural properties
of the optimal solution. We begin with three observations about the
properties of the optimal solution for this class of games.

OBSERVATION 1. All else equal, increasing ct for any target
not in �(C) has no effect on Û⇥(C) or Û (C).

Increasing ct can only decrease U (t, C) (due to the payoff as-
sumption), and cannot affect the payoffs for any other target. Since
t was not in �(C) before, decreasing the payoff cannot result in a
change to �(C), and therefore cannot influence the SSE payoffs.

OBSERVATION 2. If �(C) ⇢ �(C0) and ct = c0t for all t 2
�(C) then Û⇥(C)  Û⇥(C0).

In other words, adding an additional target to the attack set can-
not hurt the defender. This is a straightforward consequence of
the SSE assumption that the defender receives the optimal payoff
among targets in the attack set.

OBSERVATION 3. If Û (C) = x, then ct � x�Uu
 (t)

Uc
 (t)�Uu

 (t) for
every target t with Uu

 (t) > x.



ERASER: RUNNING EXAMPLE 
(2 RESOURCES, 4 TARGETS)

31

Equations to copy to powerpoint

Neal Gupta

U (t, C) = ctU
c
 (t) + (1� ct)U

u
 (t)

�12 + �13 + �14 = 3/7
�12 + �23 + �24 = 3/7
�13 + �23 + �34 = 5/7
�14 + �24 + �34 = 3/7
0  �12  1
0  �13  1
0  �14  1
0  �23  1
0  �24  1
0  �34  1

�12 = �14 = �24 = 2/21

�13 = �23 = �34 = 5/21

max d

s.t.

a1 + a2 + a3 + a4 = 1

c1 + c2 + c3 + c4  m

d� 4c1 + (c1 � 1)  (1� a1)Z

d� 4c2 + (c2 � 1)  (1� a2)Z

d� 4c3 + (c3 � 1)  (1� a3)Z

d� 4c4 + (c4 � 1)  (1� a4)Z

0  k + c1 � 1  (1� a1)Z

0  k + c2 � 1  (1� a2)Z

0  k + 2c3 � 2  (1� a3)Z

0  k + c4 � 1  (1� a4)Z

1

c1 = c2 = c4 = 3/7

c3 = 5/7

arg max
t2�(�)

U⇥(�, t)

�(�) = {t : t 2 argmaxU (�, t)}

✓
n

m

◆

� = (�12, �13, �14, �23, �24, �34)

8i, j 0  �ij  1
X

i,j

�ij = m

ct 2 [0, 1]

at 2 {0, 1}
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c1 = c2 = c4 = 3/7

c3 = 5/7

2
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ERASER – RUNNING 
EXAMPLE
Problem: we need mixture over pure strategies (i.e., placements 
of resources on targets), not just coverage vector
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Equations to copy to powerpoint

Neal Gupta

U (t, C) = ctU
c
 (t) + (1� ct)U

u
 (t)

�12 + �13 + �14 = 3/7
�12 + �23 + �24 = 3/7
�13 + �23 + �34 = 5/7
�14 + �24 + �34 = 3/7
0  �12  1
0  �13  1
0  �14  1
0  �23  1
0  �24  1
0  �34  1
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Equations to copy to powerpoint

Neal Gupta

U (t, C) = ctU
c
 (t) + (1� ct)U

u
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�13 + �23 + �34 = 5/7
�14 + �24 + �34 = 3/7
0  �12  1
0  �13  1
0  �14  1
0  �23  1
0  �24  1
0  �34  1
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ERASER-C(ONSTRAINED)
Can generalize to a 
setting where resources 
have a type drawn from 
some type space Ω
• Type ω in Ω determines 

feasible coverage 
schedules, i.e., subsets 
of targets coverable by 
that resource

Yields a very similar 
compact IP, similar 
solution of probability 
mass placed on each 
resource and schedule
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HOW TO COMPUTE THE ACTUAL 
MIXED STRATEGY TO FOLLOW?
Kiekintveld paper proved feasible solutions (i.e., coverage 
vectors) to their MIPs corresponded to mixed strategies
Did not show how to compute them quickly (     variables δω,t)
First idea: for each target t*:
• Solve separate compact LP under 

the constraint that the attacker is 
incentivized to attack t*

• Pick LP with best defender utility
• Just like last lecture!

Problem: this still gives marginal
probabilities over targets
We need probability mixture over
pure strategies! 35

c1 = c2 = c4 = 3/7

c3 = 5/7

� = (�12, �13, �14, �23, �24, �34)

arg max
t2�(�)

U⇥(�, t)

�(�) = {t : t 2 argmaxU (�, t)}

✓
n

m

◆

2



A TOOL: BIRKHOFF-VON 
NEUMANN THEOREM
Every doubly stochastic n x n matrix can be represented as a 
convex combination of n x n permutation matrices

Decomposition can be found in polynomial time O(n4.5), and the 
size is O(n2) [Dulmage and Halperin, 1955]

Can be extended to rectangular doubly substochastic matrices

.1 .4 .5

.3 .5 .2

.6 .1 .3

1 0 0
0 0 1
0 1 0

= .1
0 1 0
0 0 1
1 0 0

+.1
0 0 1
0 1 0
1 0 0

+.5
0 1 0
1 0 0
0 0 1

+.3
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SCHEDULES OF SIZE 1 
USING BVN
w 1

w 2

t1

t2

t3

.7

.1

.7

.3

.2 t1 t2 t3

w1 .7 .2 .1
w2 0 .3 .7

0 0 1
0 1 0

0 1 0
0 0 1

1 0 0
0 1 0

1 0 0
0 0 1

.1 .2.2 .5

“Schedule of size 1” à
resource is assigned to 
exactly one target
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COUNTER-EXAMPLE 
TO THE COMPACT LP

2 resources w1 & w2, schedules of size 2
LP suggests: we can cover every target with probability 1 ?????
… but in fact we can cover at most 3 targets at a time à for general 
schedule sizes, it is not always possible to find feasible mixture

w1

w2

.5

.5

.5 .5

tt

t t
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ALGORITHMS & 
COMPLEXITY

Homogeneous
Resources

Heterogeneous
resources

Sc
he

du
le

s

Size 1 P P
(BvN theorem)

Size ≤2, bipartite

Size ≤2

Size ≥3

P
(BvN theorem)

P
(constraint generation)

NP-hard
(SAT)

NP-hard

NP-hardNP-hard
(3-COVER)

[Korzhyk, Conitzer, Parr, “Complexity of 
Computing Optimal Stackelberg Strategies in 
Security Resource Allocation Games]
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