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PROJECT PROPOSALS

I’d like you to submit a 1-2 pager covering an initial plan for
your course project by the end of next week (Fri March 12).

How to submit:
« Make a channel on Slack (public or private)

» |nvite all group members + @John Dickerson

« Upload the PDF of your initial course project plan
¢ ‘@ me’

You will get 100% for this if you
submit something “okay” — this
is just to kickstart (i) movement
and (ii) discussion between us




PROJECT PROPOSALS:
A SUGGESTION

Consider a 75%/100%/125% set of goalposts:

Project Plan:
75% goals
e Create and train 3 regressor system for electrical energy consumption dataset.

e Design the adaptive learning algorithm.

100% goals
e Implement the adaptive learning algorithm.
e Apply the algorithm to forecasting electrical energy consumption in the United States problem.
e Compare its performance with baselines which are:
— Single regressor agent.

— Multi-agents with equal weights.

125% goals

e Compare this algorithm performance against other techniques used to improve long horizon forecast.

e Test this algorithm performance on other forecasting problems including a forecasting brain ventric-
ular volume as a biomarker for neurodegenerative disease progression.

e Test performance on other decision making problems that are unrelated to forecasting.

[Thanks, Aya Ismail! S2018 CMSC828M]




THIS CLASS: STACKELBERG &
SECURITY GAMES

Thanks to: AGT book, Conitzer (VC), Gupta (NG), Procaccia (AP)



SIMULTANEOUS PLAY

Previously, assumed players would play simultaneously
 Two drivers simultaneously decide to go straight or divert
 Two prisoners simultaneously defect or cooperate

* Players simultaneously choose rock, paper, or scissors

- Etc...

No knowledge of the other players’ chosen actions

What if we allow sequential action selection ...?




LEADER-FOLLOWER GAMES

Two players:

Heinrich von

- The leader commits to acting in a specific way SEEDErg

 The follower observes the leader’s mixed strategy

NE, iterated strict dominance

Commit to “Bottom”

 Social welfare: 2

- Utility to row player: 1

 Social welfare: 3

- Utility to row player: 2



ASIDE: FIRST-MOVER
ADVANTAGE (FMA)

From the econ side of things ...
« Leader is sometimes called the Market Leader
« Some advantage allows a firm to move first:

« Technological breakthrough via R&D
« Buying up all assets at low price before market adjusts

By committing to a strategy (some amount of production), can
effectively force other players’ hands.

Things we won’t model:

« Significant cost of R&D, uncertainty over market demand, initial
marketing costs, etc.

These can lead to Second-Mover Advantage
« Atari vs Nintendo, MySpace (or earlier) vs Facebook




VC

COMMITMENT AS AN
EXTENSIVE-FORM GAME

For the case of committing to a pure strategy:

Player 1

Player 2 Player 2

Left Right Left Right

1,1 3,0 0,0 2, 1




COMMITMENT TO MIXED

STRATEGIES
0 1
4911,113,0
5110,0(2, 1

Sometimes also called a Stackelberg (mixed) strategy




COMMITMENT AS AN
EXTENSIVE-FORM GAME...

For the case of committing to a mixed strategy:
Player 1

1,1 3,0 9, .5 2.5,.5 0,0 2,1

Economist: Just an extensive-form game ...
« Computer scientist: Infinite-size game! Representation matters
VC




WHAT SHOULD THE
LEADER COMMIT TO?

Special case: 2-player zero-sum normal-form games
Recall: Row player plays Minimax strategy
 Minimizes the maximum expected utility to the Col
« Minimax utility: min,_ max,; uf(s;, o.)

Doesn’t matter who commits to what, when

Minimax strategies = Nash Equilibrium
= Stackelberg Equilibrium
(not the case for general games)

Polynomial time computation via LP — earlier lectures




WHAT SHOULD THE
LEADER COMMIT TO?

Strong Stackelberg Equilibrium (SSE): follower breaks ties in
favor of the leader

Theorem [Conitzer & Sandholm]: In 2-player, general-sum
normal-form games, an SSE can be found in polytime

. 2222222222227

Idea:
» Iterate over every follower pure strategy aka column c

« Compute a mixed strategy r for leader such that playing
pure strategy c is a best response for follower

 Choose r*, the best (aka highest value for leader) mixed
strategy amongst those strategies!

[Conitzer & Sandholm, Computing the optimal strategy to commit to, EC-06]



WHAT SHOULD THE
LEADER COMMIT TO?

Separate LP for every column c*:

maximize Z. p, Ug(r, c*) IO

s.t.

forallc, X p, uc(r,c*) 2 Z p, uc(r, c) Kol ilnEI
aka Col best response

2 p =1

Distributional
forallr,p.>0 constraints

Choose strategy from LP with highest objective

[Conitzer & Sandholm, Computing the optimal strategy to commit to, EC-06]



RUNNING EXAMPLE

X

y

maximize 1x + Oy
S.t.
1x + 0y 2 0x + 1y
X+y=1
x=0

VG y20

1, 1

3,0

0,0

2, 1

maximize 3x + 2y
S.t.
Ox + 1y = 1x + Oy
X+y=1
x20

y=0




IS COMMITMENT ALWAYS
GOOD FOR THE LEADER?

Yes, if we allow commitment to mixed strategies
* Always weakly better to commit [von Stengel & Zamir, 2004] ??°??7?7?

« If (r*, c) is Nash, then Row can always commit to r* - Col will
play c*, can achieve value of that equilibrium

What about only pure strategies?
Expected utility to Row

by playing mixed Nash: ]
s nnnnnnn Rock Paper Scissors

Er[ <1/3,1/3,1/13>]1=0 Rock

Expected utility to Row by
any pure commitment: Paper +1 -1
22272722227 ’ ’
Eq[ <1,0,0>] = -1 Scissors
Egr[ <0,1,0>] = -1

Ex[ <0,0,1> ] = -1




WHAT SHOULD THE .
LEADER COMMIT TO?

Bayesian games: player i draws type 6, from O
Special case: follower has only one type, leader has type 0

Like before, solve a separate LP for every column c*:

maximize Zo1(6) Z, p, g Uge(r, C¥)

s.t.

forallc, Zom(0) Z, p, o Uc(r, €*) 2 Z5m(6) Z, P, 6 Uc(T, C)
forall 6,2 p.g=1

forallr,0,p. >0

Choose strategy from LP with highest objective




WHAT SHOULD THE v
LEADER COMMIT TO?

So, we showed polynomial-time methods for:

- 2-Player, zero-sum

- 2-Player, general-sum

« 2-Player, general-sum, Bayesian with 1-type follower
In general, NP-hard to compute:

- 2-Player, general-sum, Bayesian with 1-type leader

« Arguably more interesting (“I know my own type”)
- 2-Player, general-sum, Bayesian general

* N-Player, for N > 2:

« 1st player commits, N-1-Player leader-follower game, 2"
player commits, recurse until 2-Player leader-follower




STACKELBERG
SECURITY GAMES

Leader-follower = Defender-attacker

« Defender is interested in protecting a set of targets
« Attacker wants to attack the targets

The defender is endowed with a set of resources

« Resources protect the targets and prevent attacks
Utilities:

» Defender receives positive utility for preventing attacks,
negative utility for “successful” attacks

« Attacker: positive utility for successful attacks, negative
otherwise

* Not necessarily zero-sum




SECURITY GAMES:
A FORMAL MODEL

Defined by a 3-tuple (N, U, M):

N: set of n targets
U: utilities associated with defender and attacker

M: all subsets of targets that can be simultaneously defended
by deployments of resources

- Aschedule S c 2Nis the set of target defended by a single
resource r

« Assignment function A: R & 25 is the set of all schedules a
specific resource can support

Then we have m pure strategies, assigning resources such
that the union of their target coverage is in M

Utility uc 4(i) and u, 4(i) for the defender when target i is
attacked and is covered or defended, respectively




Resources Targets

SIMPLE EXAMPLE

Targets Defender Attacker Type 6, Attacker Type 6,

uc,d(i) uu,d(i) uc,a(i) uu,a(i) uc,a(i) uu,a(i)

o
[Blum, Haghtalab, Procaccia, Learning to Play Stackelberg Security Games, 2016] ™



REAL-WORLD

=22 USC Universityof
SECU RITY GAM Es Southern Caht}f,orma
Lots of deployed applications! m l})
« Checkpoints at airports DUke Bar-llan University

5 UNIVERSITY OF

« Patrol routes in harbors @‘/ MARYLAND

« Scheduling Federal Air Marshalls Carnegie Mellon

« Patrol routes for anti-poachers

Typically solve for strong Stackelberg Equilibria:
« Tie break in favor of the defender; always exists
« Can often “nudge” the adversary in practice

Two big practical problems: computation and uncertainty




OVERVIEW OF AN IMPACTFUL
PAPER IN THIS SPACE [Kiekintveld et al. 2009]

Computing Optimal Randomized Resource Allocations for
Massive Security Games (linked on course webpage)

* Motivated first by resource assignment for checkpoints at LAX,
e.g., multiple canine units assigned to cover multiple terminals ...

« ... and later by much larger games such as Federal Air Marshals
Service assignments and port inspection.

m resources to cover n targets, m <n
Defender (leader) commits to a mixed strategy

Attacker (follower) observes the probabilities for each coverage
set

« Surveillance, insider threat, etc — maybe not perfectly realistic
Attacker chooses a pure strategy
Equilibrium concept not ex post




OVERVIEW OF AN IMPACTFUL
PAPER IN THIS SPACE [Kiekintveld et al. 2009]

Initially assume interchangeable resources (extended in
paper, will cover in a few slides by introducing “types”)

Assume players are risk neutral
One type of follower (attacker)

» Recall: one type of follower - PTIME solvable, one LP solved
for each pure strategy of follower ...

* ... but the number of pure strategies in some games might be
large, e.g., with 100 targets and 10 resources, 1.7 x 103!




NG

RUNNING EXAMPLE

4 targets, 2 resources
Qualitatively:

« Defender values all 4 targets equally (and prefers a covered
attack to an uncovered attack).

* Attacker gets twice as much utility for successful attack on
target 3. All failed attacks get the same (lower) utility.




MOTIVATION AND
INTRODUCTION

“Utility for leader 8 if the
target 3 is attacked and it is
covered (c) or uncovered (u)”

us(3)  ue(3)

Covered | Uncovered Uncovered
Defender 4 1 Defender 4 ! ' 1
Attacker 0 1 Attacker / 0 / 2

“Utility for follower W if / /

attacks target 3 and it is Ufp (3) ufff, (3)

covered (c) / uncovered (u)”



COMPACT REPRESENTATIONS OF
SECURITY GAMES—EXTENSIVE
FORM IS TOO BIG!

Defender commits to a mixed strategy (one of uncountably
many, i.e., EFG tree will be infinite size)

A = (512,513,514,52375247534) }. In general, size <n)

Vi, j 0<édy <1
2 di=m
]

Attacker strategy is an efficient algorithm, which given any

mixed strategy, A, computes target arg max Ug(A,t)

teD(A)

Where optimization is taken over the attack set I'(A), the set
of targets yielding max expected payoff for attacker given A

['(A) ={t:t€argmaxUyg(A,t)}




COMPACT REPRESENTATIONS
OF SECURITY GAMES

Key insight: the only information needed to represent the
defender strategy is the probabilities a target is covered

1,2 1,3 1,4
0" +02°+02" =1 In our 2 resources, 4
© S S — targets example:

5%’2 -+ (52)’3 + 5?_)’4 = Co probability ¢, that
target 1 is covered is
(5%’3 -+ 5(29’3 -+ 5%’4 = C3 sum of all pure

L4 5 4 34 strategies that cover 1
dg +0g +0g =ca
This gives us a coverage vector C
* Running example: C = [c4, Cy, C3, C4]

ERASER (Efficient Randomized Allocation of SEcurity Resources) takes
security game & computes C that is SSE for defender




ERASER
FORMULATION

max d
ar € {0,1} vt €T Attacker can
assign mass to
Z at = 1 exactly one target
teT
ct € 0, 1] vteT Defender applies
valid (aka at most
Z Ct < m m) probability
teT mass over targets
d—Us(t,0)< (1—a))-Z VteT l
0<k—-Uyg (t, C) < (1 — at) 4 NteT (Theorem in paper

states how to convert
coverage vector to

Ue (t7 C) — CtU(S) (t) + (1 — Ct)U(g (t> mixed strategy)




ERASER
FORMULATION

max d
Determine the

defender’s expected
payoff d, given the
target attacked (a,)

* For unattacked
targets (a;=0), RHS
is huge (i.e., Z)

* For attacked target
d—Ue(t,C)< (1—a¢)-Z VteT (a=1), RHS is 0 >
d = utility of
defender given t
attacked, and

Expected utility to leader given attack on t coverage vector C

and coverage vector with coverage c;
Objective: maximize d

Us(t,C) = ciUg(t)+ (1 —ct)Us(2)




ERASER
FORMULATION

Two bottom sets of
constraints imply that
defender’s coverage
vector C is best
response to attack
vector A, & vice versa

- Strong Stackelberg
Equilibrium

“Big M” (or in this
case “Big Z”) style of
constraints are a
common way to
encode if statements

d — U@(t,C)
0<k—-Uy(t,C)

(l—at)-Z \V/tET

IA A




ERASER: RUNNING EXAMPLE
(2 RESOURCES, 4 TARGETS)

max d

s.t.

a1 +as +as+ags =1
c1+ca+c3+ca<m
d—4dc1+ (g —1)<(1—a1)Z
d—4dco+ (o —1) <
d—4c3 + (c3 —1)
d—4cs + (cqg — 1)
0<k+c —1
0<k-+c—1
0<k+2c3 —2

N

1—&2

N

)
( )
(1 —as3)
(1 —ay)
(1 —aq)
( )
( )
(

N

1—&2

VAN VANSN VANRN VAN VAN

N

1—0,3
~ 1—&4)2




ERASER: RUNNING EXAMPLE
(2 RESOURCES, 4 TARGETS)

ot node proce
al tim

eal time

C tim

000000
000
0000

3/7
5/7




ERASER - RUNNING
EXAMPLE

Problem: we need mixture over pure strategies (i.e., placements
of resources on targets), not just coverage vector

012 + 013 + 014 = 3/7

012 + 023 + 024 = 3/7

013 + 023 + 034 = 5/7

014 + 024 + 034 = 3/7

0<012<1 012 = 014 = 024 = 2/21
0 S 513 S 1 » 513:523:534:5/21
0<014<1

0<d93<1

0<o09q <1
0<d34 <1




ERASER-C(ONSTRAINED)

Can generalize to a
setting where resources
have a type drawn from
some type space Q

 Type w in Q determines
feasible coverage
schedules, i.e., subsets
of targets coverable by
that resource

Yields a very similar
compact IP, similar
solution of probability
mass placed on each
resource and schedule

max d
at € {0,1}
ct € [0, 1]
qs € [0, 1]
hs,w € [0, 1]
Zat = 1
teT
> hsw= gs
weN
Z qgsM(s,t) = ct

z hswCa(s,w) < R(w)

ses
hsw < Ca(s,w)
d—Use(t,C)< (1—at)-Z
0<k—Us(t,C)< (1—ap)-2

VteT
VteT
Vs € S
Vs,we § x Q

Vse S

vteT

Yw € Q

Vs,we S x N
VieT
VteT




HOW TO COMPUTE THE ACTUAL
MIXED STRATEGY TO FOLLOW?

Kiekintveld paper proved feasible solutions (i.e., coverage
vectors) to their MIPs corresponded to mixed strategies

Did not show how to compute them quickly ((,Z) variables o, ;)

. . . *.
First idea: for each target t*: maximize Ug(t*, c)

* Solve separate compact LP under  gypject to
fthe co_n§tra|nt that the attacker is Vw e OVt € A(w):0<cy; <1
incentivized to attack t* ’

. Pick LP with best defender utility "¢ €1 1€ = Q;A( )Cw,t =1
wellteA(w
« Just like last lecture!
Yw € Q) : Z Cut <1
Problem: this still gives marginal teA(w)

probabilities over targets Vt € T : Uy(t,c) < Uy(t*, c)

We need probability mixture over
pure strategies!




A TOOL: BIRKHOFF-VON
NEUMANN THEOREM

Every doubly stochastic n x n matrix can be represented as a
convex combination of n x n permutation matrices

1145
315].2
61.1].3
110/0 ol1]0 o0 1 ol1]0
=t1lolo|1]| *T|olo|1] **|o|1]0o] *3|1|0]|o0
ol1]0 1101]0 1100 o0 1

Decomposition can be found in polynomial time O(n*%), and the
size is O(n2) [Dulmage and Halperin, 1955]

Can be extended to rectangular doubly substochastic matrices




SCHEDULES OF SIZE 1 schedule of size 1" >

resource is assigned to

USI N G BVN exactly one target

. 2 I
2 N

e M
t3

N 2 2 D
0 0 0 1 0 10 0 1.0 0
0 1 0 0 0 1 0 1 0 0 0 1
0O

o ® o

~ .
e . e B




VC

COUNTER-EXAMPLE
TO THE COMPACT LP

W

5 O O

5 O O

2 resources n4 & ®,, schedules of size 2

... but in fact we can cover at most 3 targets at a time > for general
schedule sizes, it is not always possible to find feasible mixture

o0
™



co M P LEXI I Y [Korzhyk, Conitzer, Parr, “Complexity of
Computing Optimal Stackelberg Strategies in

Security Resource Allocation Games]

P

- i ‘I (BvN theorem)
P NP-hard
(BvN theorem) (SAT)
P O
(constraint generation) NP-hard
NP-hard . Fird
(3-COVER)




