APPLIED MECHANISM DESIGN FOR SOCIAL GOOD

JOHN P DICKERSON

Lecture #23 – 04/20/2021 Lecture #24 – 04/22/2021 Lecture #25 – 04/27/2021

CMSC828M Tuesdays & Thursdays 2:00pm – 3:15pm

ANNOUNCEMENTS

Please turn in a project checkup by April 29th

 Very simple – can just be a paragraph or two written in your project Slack channel, or a new PDF

Research videos:

- Please do make a 10-15 minute video covering a research paper, and/or your research project something relevant in the space.
- This can be done with your group, too!

No exams:

• Counting as full %, per syllabus

TODAY'S PROBLEM

Like most lectures in this class:

- *m* items (initially divisible, later indivisible)
- *k* agents with private values for bundles of items

Either the agents, the items, or both arrive over time.

This class:

- Start with fair allocation of multiple divisible resources in a dynamic setting [Kash Procaccia Shah JAIR-2014]
- Move to fair dynamic allocation of indivisible items via a restricted bidding language [Aleksandrov et al. IJCAI-2015]

Thanks to: Nisarg Shah (NS), Nick Mattei (NM)

ALLOCATION OF DIVISIBLE RESOURCES WITHOUT MONEY

Allocating computational resources (CPU, RAM, HDD, etc)

- Organizational clusters (e.g., our new Horvitz cluster)
- Federated clouds
- NSF Supercomputing Centers

We'll focus on fixed bundles (slots)

Allocated using single resource abstraction

Highly inefficient when users have heterogeneous demands

DOMINANT RESOURCE FAIRNESS (DRF) MECHANISMS [Ghodsi et al. NSDI-11]

Idea: Assume structure on user demands

Proportional demands (a.k.a. Leontief preferences)

$$u(x_1,\ldots,x_m)=\min\left\{rac{x_1}{w_1},\ldots,rac{x_m}{w_m}
ight\}$$

Example:

- User wishes to execute multiple instances of a job
- Each instance needs (1 unit RAM, 2 units CPU)
- Indifferent between (2, 4) and (2, 5)
- Happier with (2.1, 4.2)

DOMINANT RESOURCE FAIRNESS (DRF) MECHANISMS

Dominant resource: resource the agent has the biggest share of out of all resources available:

- 16 CPUs, 10 GB available, user allocated 4 CPUs, 8 GB
- Dominant resource is GB, because 4/16 CPU < 8/10 GB

Dominant share: fraction of dominant resource allocated

• Above, dominant share is 8/10 = 80%

STATIC DRF MECHANISM

Dominant Resource Fairness = equalize largest shares

(a.k.a. dominant shares)

Dominant resource (for an agent): resource for which the agent's task requires the largest fraction of total availability

Assumes all agents are present from the beginning and all the job information is known upfront

Can relax this to dynamic setting:

- Agents arriving over time
- Job information of an agent only revealed upon arrival

This paper initiated the study of dynamic fair division

- Huge literature on fair division, but mostly static settings
- Still very little work on fair division in dynamic environments!

FORMAL DYNAMIC MODEL

Resources are known beforehand

Agents arrive at different times (steps), do not depart

• Total number of agents known in advance

Agents' demands are proportional, revealed at arrival

Each agent requires every resource

Simple dynamic allocation mechanism:

- At every step k
 - Input: k reported demands
 - Output: An allocation over the k present agents
- Terminate after final agent arrives

Irrevocability of resources!

DESIDERATA

Properties of DRF, aims for a dynamic generalization

Property	Static (DRF)	Dynamic (Desired)	
Envy freeness	EF: No swaps.	EF: No swaps at any step.	
Sharing incentives	SI: At least as good as equal split.	SI: At least as good as equal split to every present agent at all steps.	
Strategyproofness	SP: No gains by misreporting.	SP: No gains at any step by misreporting.	
Pareto optimality	PO : No "better" allocation.	DPO: At any step k, no "better" allocation using k/n share of each resource.	

IMPOSSIBILITY RESULT

Envy freeness + Dynamic Pareto optimality = Impossible

- DPO requires allocating too much
- Later agents might envy earlier agents

Dropping either of them completely \rightarrow trivial mechanisms!

Relax one at a time ...

1) RELAXING ENVY FREENESS

Envy impossible to avoid if efficiency (DPO) required

• But unfair if an agent is allocated resources while being envied

Dynamic Envy Freeness (DEF)

• If agent *i* envies agent *j*, then *j* must have arrived before *i* did, and must not have been allocated any resources since i arrived

Comparison to Forward EF [Walsh ADT-11]: An agent may only envy agents that arrived after her

- Forward EF is strictly weaker

MECHANISM: DYNAMIC-DRF

- 1. Agent *k* arrives
- 2. Start with (previous) allocation of step *k*-1
- 3. Keep allocating to all agents having the minimum "dominant" (largest) share at the same rate
 - Until a *k*/*n* fraction of at least one resource is allocated

(A constrained "water-filling" algorithm.)

Dynamic-DRF satisfies relaxed envy freeness (DEF) along with the other properties (DPO, SI, SP).

DYNAMIC-DRF ILLUSTRATED

3 agents, 2 resources

2) RELAXING DPO

Sometimes total fairness desired

Naïve approach: Wait for all the agents to arrive and then do a static envy free and Pareto optimal allocation

• Can we allocate more resources early?

Cautious Dynamic Pareto Optimality (CDPO)

- At every step, allocate as much as possible while ensuring EF can be achieved in the end irrespective of the future demands
- Cautious-LP: a constrained water-filling mechanism

Cautious-LP satisfies relaxed dynamic Pareto optimality (CDPO) along with the other properties (EF, SI, SP).

EXPERIMENTAL EVALUATION

Initial static DRF paper has had a big effect in industry. Now: Dynamic-DRF and Cautious-LP under two objectives:

- Maximize the sum of dominant shares (utilitarian, maxsum)
- Maximize the minimum dominant share (egalitarian, maxmin)

Comparison with provable lower and upper bounds

Data: traces of real workloads on a Google compute cell

- 7-hour period in 2011, 2 resources (CPU and RAM)
- code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

EXPERIMENTAL RESULTS

DISCUSSION

Relaxation: allowing zero demands

- Trivial mechanisms for SI+DPO+SP no longer work
- Open question: possibility of SI+DPO+SP in this case

Allowing agent departures and revocability of resources

- No re-arrivals → same mechanism (water-filling) for freed resources
- Departures with re-arrivals
 - Pareto optimality requires allocating resources freed on a departure
 - Need to revoke when the departed agent re-arrives

Recall: even in the static setting, an envy-free allocation may not exist (we'll talk about this more next week):

• So: change our desiderata from previous part of lecture

New model:

- *k* agents, each with private utility for each of *m* items
- Items arrive one at a time
- Agents bid "like" or "dislike" on items when they arrive
- Mechanism must assign items when they arrive

THE LIKE MECHANISMS

LIKE Mechanism:

- Item arrives
- Some subset of agents bid "Like"
- Mechanism allocates uniformly at random amongst "Likers"

Bad properties ????????

BALANCED-LIKE Mechanism:

- Same as LIKE, but allocates randomly amongst "Likers" that have received the fewest overall number of items
- Guarantees agent receives at least 1 item per every *k* she Likes

STRATEGY PROOFNESS

LIKE Mechanism ?????????

• Yes, always Like if utility is nonzero

LIKE is strategy proof for general utility functions

STRATEGY PROOFNESS

BALANCED-LIKE Mechanism ????????

BALANCED-LIKE is not SP, even for 0/1 utilities

True private utilities

T H E

O R E M

Items	а	b	С	
Agent 1	1	1	1	
Agent 2	1	-	1	
Agent 3	-	1	-	
Arrivals: $a \rightarrow b \rightarrow c$				

EV of truthful A1 vs. truthful A2 and A3 ?????

- 0.5: a → not b → not c, 0.5*1 = 1/2
- 0.5: not a → ...
 - 0.5: not b \rightarrow c = 0.5*0.5*1 = 1/4
 - 0.5: $b \rightarrow 0.5 c = 0.5*0.5*(1 + 0.5*1) = 3/8$
- EV = 1/2 + 1/4 + 3/8 = 9/8

Manipulation:

- Don't bid on item a → Agent 2 gets a
- Bid on b \rightarrow 0.5: get b = 1/2
- Bid on $c \rightarrow$ have b? \rightarrow 0.5: get c; not b? \rightarrow c
- EV = 1/2 + 1/2 + 1/4 = 5/4 > 9/8

STRATEGY PROOFNESS

Ε

0

R E M BALANCED-LIKE is SP with 2 agents and 0/1 utilities

BALANCED-LIKE is not SP with 2 agents and general utilities (even for the case of only 2 items)

SO THE SYSTEM CAN BE GAMED ...

What does this do social welfare? Fairness?

- Authors were motivated by working with Food Bank Australia, where unsophisticated dispatchers bid on food
- Strong case to be made to care about both objectives!
- In general, bidding strategically is quite bad for social welfare:
- Compare sincere behavior against set of Nash profiles

There are instances with 0/1 utilities and *k* agents where: the {egalitarian, utilitarian} welfare with sincere play under {LIKE, BALANCED-LIKE} ...

... is k times the corresponding welfare under a Nash profile.

WHAT ABOUT ENVY?

Ex-ante envy freeness: over all possible outcomes, do I expect to be envious?

Ex-post envy freeness: after items are allocated, am I envious?

- Yes. Each item's allocation is independent of past allocations.
- Assume first *m*-1 allocations are EF. Item *m* arrives. Each of *j* < *k* agents with utility 1 receives item in 1/*j* of possible worlds. Still EF.

No. 2 agents, utility 1 for all *m* items. Agent 1 gets lucky and receives all *m* items (P = ½ⁿm > 0); unbounded envy!

WHAT ABOUT ENVY?

Using similar arguments, paper shows that BALANCED-LIKE under 0/1 utilities is:

- Ex-ante envy free
- Bounded ex-post envy free (with at most 1 unit of envy)

Quick summary:

- Effect of strategic behavior can be very bad for efficiency!
- Under sincere play, mechanisms seem pretty fair ...
 - ... under unit preferences for items

WHAT TO DO?

Motivated by a food bank problem:

 Participants may be altruistic, social-welfare-minded, and relatively unsophisticated → sincere behavior?

Bundle items so participants value then roughly equally

• Equivalent to 0/1 utilities, can leverage fairness properties

Problems:

- Bidders still have self interest
- Bundling items takes time (and produce spoils quickly)
- Bundling items may not always be possible

COMBINATORIAL ASSIGNMENT PROBLEMS & COURSE MATCH

Thanks to: John Kubiatowicz (JK)

RECALL: DRF

Proportional demands (a.k.a. Leontief preferences)

$$u(x_1,\ldots,x_m)=\min\left\{rac{x_1}{w_1},\ldots,rac{x_m}{w_m}
ight\}$$

Dominant resource: resource the agent has the biggest share of out of all resources available:

- 16 CPUs, 10 GB available, user allocated 4 CPUs, 8 GB
- Dominant resource is GB, because 4/16 CPU < 8/10 GB

Dominant share: fraction of dominant resource allocated

• Above, dominant share is 8/10 = 80%

DRF: application of max-min fairness to dominant shares

• Equalize the dominant share amongst agents

STATIC DRF MECHANISM

Dominant Resource Fairness = equalize largest shares

(a.k.a. dominant shares)

ALTERNATIVE: MAKE A MARKET

Competitive Equilibrium from Equal Incomes (CEEI):

- Agents report their preferences over sets of items
- Give agents an equal budget of funny money
- Computer finds prices that clear the market
 - That is, prices such that when each agent chooses its most favored set that it can afford, the market clears
- Assign all resources to agents based on their demands and these computed prices

CEEI EXAMPLE: DIVISIBLE RESOURCES

Supply: {1 cake, 1 doughnut}

Two agents, both with \$1 (funny money), capacity of 1

- A: cake = 1/2, doughnut = 1
- B: cake = 1/4, doughnut = 1

Market clearing prices: cake = \$2/5, doughnut = \$8/5

A wants to max 1/2c + 1d• c + d < 1 s.t. $p_c c + p_p d \le 1$ Max: ¹/₂ cake, ¹/₂ doughnut 1/4c + 1d *B* wants to max • c + d < 1 s.t. $p_{c}c + p_{p}d <= 1$ Max: ¹/₂ cake, ¹/₂ doughnut (and many others – clearinghouse chooses!)

CEEI PROPERTIES

- Envy-free ???????
 - Yes! Given the prices, you bought the best bundle you could afford
 - If you envy somebody else's bundle, you could've purchased it!
- Pareto-efficient ???????
 - Yes! Market is cleared → taking a Pareto step involves taking a resource from one agent and giving it to somebody new ... but this lowers their utility by above
- Strategy proof ???????
 - No! Intuition: CEEI clears the market → can game the system by requesting more underutilized resources

DRF VS CEEI

A1: <1 CPU, 4 GB> A2: <3 CPU, 1 GB>

• DRF more fair, CEEI better utilization

A1: <1 CPU, 4 GB> A2: <3 CPU, 2 GB>

• A2 increased her share of both CPU and memory

CEEI FOR INDIVISIBLE ITEMS?

Two agents

Capacity: 2

Both agents will share the same preference profile:

Market clearing prices ???????

- Don't exist! For any price, for any item, either both agents demand that item or both do not.
- Small changes in price can cause big changes in demand

APPROXIMATE-CEEI

Can we tiebreak somehow?

Idea: give agents slightly different, but roughly equal budgets

- For each agent, draw budget from [1, 1 + *B*)
- 0 < B < min(1/m, 1/(k-1)) k is capacity of agent
- Note: if *B* = 0, this is just CEEI

Still "feels fair" – random winners and losers in the budget draw, and the playing ground is still roughly equal.
A-CEEI FOR INDIVISIBLE ITEMS

Two agents

Capacity: 2

Agent 1's budget: \$1.2

Agent 2's budget: \$1

= \$0.20

A-CEEI: PROPERTIES

Always exists if *B* > 0 (need unequal budgets)

The market approximately clears:

 There exist prices that clear the market to within an error of at most \sqrt{k*m/2}

 Error does not depend on the number of participants → error goes to zero as a fraction of the underlying endowment

Approximately strategy proof

• "Strategy-proof in the large"

Bounded envy free

Very difficult to compute!

WHEN DO FAIR ALLOCATIONS EXIST AND HOW DO WE FIND THEM?

Thanks to: Yonatan Aumann (YA), Ariel Procaccia (AP), Shengyu Zhang (SZ)

CUTTING A DIVISIBLE CAKE: MODEL

- Division of a heterogeneous divisible good
- The cake is the interval [0,1]
- Set of agents N = {1,...,n}

Each agent has a valuation function V_i over pieces of cake

- Additive: if $X \cap Y = \emptyset$ then $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- ∀i∈N, V_i([0,1]) = 1

Find an allocation $A = A_1, ..., A_n$

The cake is a metaphor.

FAIRNESS DEFINITIONS

Proportionality: $\forall i \in N, V_i(A_i) \ge 1/n$

Envy-freeness: $\forall i, j \in \mathbb{N}, V_i(A_i) \ge V_i(A_j)$

Assuming free disposal the two properties are incomparable

- - Throw away cake!
- Proportional but not envy-free:

DETERMINISTIC ALGORITHMS

Current research in cake cutting: design truthful, envy free, proportional, and tractable cake cutting algorithms

Requires restricting the valuation functions

• Lower bounds for envy-free cake cutting (see, e.g., [Procaccia, 2009, 2014])

Valuation V_i is piecewise uniform if agent i is uniformly interested in a piece of cake

• E.g., interested uniformly in [0,0.5] but not (0.5,1.0]

THEOREM

Assuming that the agents have piecewise uniform valuations, then there is a deterministic algorithm that is truthful, proportional, envyfree, and polynomial-time.

RANDOMIZED ALGORITHMS

A randomized algorithm is universally envy-free (resp., universally proportional) if it always returns an envy-free (resp., proportional) allocation

A randomized algorithm is truthful in expectation if an agent cannot gain in expectation by lying

 \rightarrow Looking for universal fairness and truthfulness in expectation

A RANDOMIZED CAKE CUTTING PROTOCOL

A partition $X_1,...,X_n$ is perfect if for every i, k, $V_i(X_k)=1/n$ Algorithm:

- **1**. Find a perfect partition $X_1, ..., X_n$
- 2. Give each player a random piece

Observation [Mossel&Tamuz 2010]: algorithm is truthful in expectation, universally E-F and universally proportional

• Proof: if agent i lies it may lead to a partition $Y_1, ..., Y_n$, but ????????? $\Sigma_k (1/n)V_i(Y_k) = (1/n) \Sigma_k V_i(Y_k) = 1/n$

It is known that a perfect partition always exists [Alon 1987]

 Lemma: if agents have piecewise linear valuations then a perfect partition can be found in polynomial time

COUNTING CUTS & QUERIES

Algorithms for different variants of the problem:

- Finite Algorithms
- "Moving knife" algorithms

Lower bounds on the number of steps required for divisions

• (see [Procaccia CACM-14] for an easy-to-read discussion)

Until very recently it was unknown if there was a bounded (in terms of queries to agents' valuation functions, and in terms of cuts) and E-F cake cutting algorithm for 4 or more players

- [Aziz and Mackenzie STOC-16]: bounded (231 cuts) for 4 players
- [Aziz and Mackenzie FOCS-16]: bounded (O(n^n^n^n^n) queries) for n players

Alice likes the candies Bob likes the base

- 1. Alice cuts in "her" middle
- 2. Bob chooses

× Equitable

Stage 0: Player 1 divides into three equal pieces

• (According to her valuation)

Player 2 trims the largest piece s.t. the remaining is the same as the second largest.

The trimmed part is called Cake 2; the other forms Cake 1

STAGE 1: DIVISION OF CAKE 1

Player 3 chooses the largest piece ("his" largest)

If Player 3 didn't choose the trimmed piece:

• Player 2 chooses it

Otherwise:

• Player 2 chooses one of the two remaining pieces

Either Player 2 or Player 3 receives the trimmed piece; call that player *T*

• Call the other player by *T*'

Player 1 chooses the remaining (untrimmed) piece

STAGE 2: DIVISION OF CAKE 2

T' divides Cake 2 into three equal pieces

• (According to her valuation)

Players T, 1, and T' choose the pieces of Cake 2, in that order.

WHOLE PROCESS

 $P_{T'}$ cuts $P_T \rightarrow P_1 \rightarrow P_{T'}$ choose cake 2

ENVY-FREENESS

The division of Cake 1 is envy-free:

- Player 3 chooses first so he doesn't envy others.
- Player 2 likes the trimmed piece and another piece equally, both better than the third piece. Player 2 is guaranteed to receive one of these two pieces, thus doesn't envy others.
- Player 1 is indifferent judging the two untrimmed pieces and indeed receives an untrimmed piece.

ENVY-FREENESS OF CAKE 2

The division of Cake 2 is envy-free:

- Player *T* goes first and hence does not envy the others.
- Player *T*' is indifferent weighing the three pieces of Cake 2, so he envies no one.
- Player 1 does not envy T': Player 1 chooses before T'
- Player 1 doesn't envy *T*: Even if T the whole Cake 2, it's just 1/3 according to Player 1's valuation.

GENERAL n?

- An algorithm using recursion
- **1.** Let P_1, \ldots, P_{n-1} divide the cake
 - How? Recursively.
- **2.** Now P_n comes.
 - Each of P_1, \dots, P_{n-1} divides her share into n equal pieces
 - P_n takes a largest piece from each of P_1, \dots, P_{n-1}

FAIRNESS AND COMPLEXITY

The protocol is (proportional) fair

Proof.

- For P_1, \dots, P_{n-1} : each gets $\geq \frac{1}{n-1} \cdot \frac{n-1}{n} = \frac{1}{n}$.
- P_n : gets $\geq \frac{a_1}{n} + \dots + \frac{a_{n-1}}{n} = \frac{1}{n}$
 - $a_i: P_n$'s value of P_i 's share in Step 1.

Complexity? Let T(n) be the number of pieces.

- Recursion: $T(n) = n \cdot T(n-1)$
- T(1) = 1, and T(n) = n! for general n.

Continuously move a knife from left to right.

1. A player yells out "STOP" as soon as knife has passed over 1/n of the cake

- (By her valuation function)
- 2. The player that yelled out is assigned that piece. (And she is out of the game; $n \leftarrow n 1$)
- Break ties arbitrarily
- 3. The procedure continues until everyone gets one piece

FAIRNESS AND COMPLEXITY

The protocol is (proportional) fair

Proof.

- For the first who yells out: she gets 1/n
- For the rest: each things that the remaining part has value at least $\frac{n-1}{n}$, and n-1 people divide it
 - Recursively: each gets $\frac{1}{n-1}\frac{n-1}{n} = \frac{1}{n}$.

Complexity ??????

- Only n 1 cuts into n pieces
- Query complexity ??????

Envy free ???????

WHAT ABOUT FAIRNESS VS SOCIAL WELFARE?

Social welfare maximizing allocation ???????

THE PRICE OF FAIRNESS IN CAKE CUTTING

Given an instance:

PRICE OF E-F: CONTINUED EXAMPLE

Utilitarian Price of Envy-Freeness: 4/3

Price of	Proportionality	Envy freeness	Equitability
Utilitarian	$\frac{\sqrt{n}}{2}$	+ O(1)	n + O(1)
Egalitarian	1	$\frac{n}{2}$	1

UTILITARIAN PRICE OF E-F: LOWER BOUND

Best possible utilitarian: \sqrt{n}

Best proportional/envy-free utilitarian: $\frac{1}{n} \cdot (n - \sqrt{n}) + 1 < 2$ Utilitarian Price of envy-freeness: $\approx \sqrt{n}/2$

CEEI FOR MULTIPLE DIVISIBLE ITEMS [Varian 1974]

Endow all players with a budget of \$1

Competitive equilibrium is:

- (Virtual) prices such that ...
- ... when each player buys their most valuable bundle at those prices ...
- ... the market clears.

Tough to compute

Envy free allocation

• (I can afford any other player's bundle, but chose my own)

RECALL: CEEI FOR INDIVISIBLE ITEMS?

Two agents

Capacity: 2

Both agents will share the same preference profile:

Market clearing prices

 Don't exist! For any price, for any item, either both agents demand that item or both do not.

Got around this via "A-CEEI," slightly different budgets for agents, envy free up to 1 good, ~SP in the large ...

ENVY-FREENESS UP TO ONE GOOD

Recall: an allocation $A_1, ..., A_n$ is envy free up to one good (EF1) if for all i, j,

$$v_i(A_i) \ge v_i(A_j) - \max_{g \in A_j} v_i(g)$$

A round-robin allocation is EF1:

MAXIMUM NASH WELFARE

However, round robin is not Pareto efficient

Can we find a mechanism that is both EF1 and Pareto efficient?

Idea: Maximize the Nash welfare $\prod_i v_i(A_i)$

For homogeneous divisible goods:

- Envy free and Pareto efficient
- Coincides with CEEI and proportional fairness

For indivisible goods:

Rounding does not work

Maximizing Nash welfare satisfies EF1 and Pareto efficiency

WHEN DO TRULY E-F ALLOCATIONS EXIST?

Can we characterize when an EF allocation of indivisible goods exists (with high probability)?

[A1]: utilities are drawn I.I.D.

[**A2**]:

- each agent equally likely to want g the most
- difference between the expected utility of the agent most wanting g and any other agent is at least some constant μ

Uniform distribution satisfies [A1] and [A2]

Goods with intrinsic base values \rightarrow only [A2]

A SMALL NUMBER OF GOODS

Even when the number of goods is larger than the number of agents by a **linear fraction**, an EF allocation probably won't exist. [Dickerson et al. AAAI-14]

Note: if *m* < *n*, clearly no EF allocation exists.

• How many additional goods beyond *m*=*n* are needed?

Formally: under [A1], for small constant δ :

- if the probability that EF allocation exists is $1-\delta$
- then $m \ge (1+c(\delta))n$, with $c(\delta) \ge 0$

A SMALL NUMBER OF GOODS

Thought: If two agents want the same good the most, require at least three goods for an envy-free allocation

Count such collisions; are there too many?

A LARGE NUMBER OF GOODS

When the number of goods is larger than the number of agents by a **logarithmic factor**, an EF allocation probably exists.

Formally: under [A2], with $n = O(m/\ln m)$:

• An EF allocation exists (w.p.1) as $m \rightarrow \infty$

Idea: give each good to the agent who wants it the most

This produces EF allocations with high probability

A LARGE NUMBER OF GOODS

Proof of the theorem uses a natural mechanism that also maximizes social welfare over the space of allocations

Alternate theorem statement:

"When the number of goods is larger than the number of agents by a logarithmic factor, **the social welfare-maximizing allocation is EF**."

EXPERIMENTAL VALIDATION

Both theorem statements hide constants

• When do these results "kick in"?

We test under two distributions:

- Uniform
 - Satisfies [A1] and [A2] and thus both theorems
- Correlated (goods have intrinsic values)
 - Satisfies [A2] and thus Theorem 2

Hold *n* constant, vary *m*, see when EF allocations exist

And how long it takes to find them (or prove otherwise)

- Number of agents (x-axis) vs. number of items (y-axis) before at least 99% of the instances had an EF allocation, for each of the Uniform and Correlated distributions.
- Theorem 2: w.h.p. occurs when $n = O(m/\ln m) aligns with results$.

EXPLORING THE PHASE TRANSITION

Is the runtime spike an artifact of the model?

Tried two models in the paper:

- Feasibility problem (Model #1)
- Optimization problem (Model #2)

Motivation: state-of-the-art IP solvers treat feasibility and optimization problems differently

• Some evidence that adding objective can help (e.g., the "MIP Nash" paper [Sandholm Gilpin Conitzer 2005])

$$\begin{array}{ll} \text{find} & x_{ig} & \forall i \in N, g \in G \\ \text{s.t.} & \sum_{i \in N} x_{ig} = 1 & \forall g \in G \\ & \sum_{g \in G} v_{ig} x_{i'g} - \sum_{g \in G} v_{ig} x_{ig} \leq 0 & \forall i \neq i' \in N \\ & x_{ig} \in \{0, 1\} & \forall i \in N, g \in G \end{array}$$

