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Market design is a kind of economic 
engineering, utilizing laboratory research, game 
theory, algorithms, simulations, and more.

Its challenges inspire us to rethink longstanding 
fundamentals of economic theory.

– Paul Milgrom, presentation when awarded 
2008 Erwin Plein Nemmers Economics Prize
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Market Design*

Market design is partially based on mechanism design, i.e., 
the design of incentives, toward a particular goal, in a 
strategic setting with one or more agents. 

Design of incentives:
• Pricing and allocation rules in auctions
• Joining an agent to a contract in a matching market

Toward a particular goal:
• Maximize global welfare
• Ensure some notion of fairness
• Maximize revenue of the clearinghouse aka principal

Strategic settings:
• Agents’ strategies are chosen knowing that their outcome 

will depend also on other agents’ choices

*for the sake of this talk, at least!
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“Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel” in 2020 (Paul Milgrom & 

Robert Wilson); 2012 (Al Roth & Lloyd Shapley); 2007 (Roger Myerson, Leonid Hurwicz, & Eric Maskin).



Market Auction Design*

An auction mechanism is run by a central coordinator, who asks 
agents to report their preferences and then aggregates them in 
some way before deciding on an allocation and payments

Agents have private information about preferences (i.e., their private 
type θ), and can choose to lie about them to the coordinator 

The distribution over which they draw their types is known to all.

*for the sake of this talk, at least!
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Publicly known valuation 
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Private valuations

Players strategically choose bids and 
send them to the allocation mechanism f

The mechanism outputs
allocations of items, and a
payment to charge each player

Players receive utility based 
on allocations, payments, 
and their private valuation.

Auction Model*
*for the sake of this talk, at least!

Items: j = 1, 2, …, k
Agents: i = 1, 2, …, n
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(Utilities may also take forms 
other than quasilinear.)



Mechanism Design & Equilibrium Behavior

Common assumptions of mechanism design:
• Agents are rational utility maximizers (rational in a very strong sense)
• Will play a (Bayes-)Nash equilibrium

Designing a mechanism with "good" equilibrium behavior is hard.
• Here, “good” means our mechanism implements a function f (e.g., 

social welfare maximization) under agents’ strategic behavior.
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Desirable Properties of Auctions

Individual rationality (IR): nobody who is truthful ever pays more than 
their expected value for the allocation
Dominant-strategy incentive compatible (DSIC): it is always optimal 
to bid your true valuation, no matter what others do: 

Revenue maximization: want ∑% 𝑝% to be as large as possible
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Optimal Auction Design I

An optimal auction is incentive compatible 
and revenue-maximizing.
Analytic results are very tough to create:
• Myerson [1981] resolved for 1 item!
• Some progress since then, but 2 items & 2 

bidders is not fully resolved, still …
Many nice recent works (from Econ, CS, 
Math, OR/MS, …), typically focus on BNIC 
instead of DSIC, though …
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Myerson [1981]: DSIC = 
BNIC revenue, 1 item case

Yao [2017]: DSIC ≠ BNIC 
revenue, 2 item case

&
Exact formulaic results for 
2 items, distribution with 

support of size 2.



Optimal Auction Design II

Analytic results are very tough to create.
• 2 item, 1 bidder with additive valuations 

[Manelli-Vincent 2006, Giannakopoulos&Koutsoupias 2015, 
Haghpanah&Hartline 2015, Daskalakis+ 2017, ..]

• 2 items, unit-demand bidders [Pavlov 2011]

Something to keep in mind:
• Not allocating an item à not okay in social welfare maximization
• Not allocating an item à sometimes okay in revenue maximization
Intuition: you get nothing for selling nothing, but you can “beat 
second price/VCG” if you do end up selling it
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What If There Are Multiple Items and More 
Than 1 Bidder …?
Not totally out of luck!
1. Informed by theoretical analyses of smaller, general systems
2. Can design approximately optimal mechanisms
3. Can use automated mechanism design [Conitzer&Sandholm 2002]

We’re most motivated by the general pitch of (3) – “automatically” 
designing a mechanism for a specific problem instance, but …
... older methods run into severe scalability issues, so not practical.
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Publicly known valuation 
distribution 𝑃(𝒗!)

𝒗! ∈ ℝ"

𝒃! 𝑓!(𝒃#, … , 𝒃$)
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Private valuations

Players strategically choose bids and 
send them to the allocation mechanism f

The mechanism outputs
allocations of items, and a
payment to charge each player

Players receive utility based 
on allocations, payments, 
and their private valuation.

Recall: Auction Model*
*for the sake of this talk, at least!
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Differentiable Economics

Differentiable programming — term coined by Yann LeCun
• “OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep Learning 

est mort. Vive Differentiable Programming! …Yeah, Differentiable Programming is 
little more than a rebranding of the modern collection Deep Learning 
techniques…”

• “But the important point is that people are now building a new kind of software by 
assembling networks of parameterized functional blocks and by training them 
from examples using some form of gradient-based optimization. “

Differentiable economics — term coined in same spirit by David Parkes
• Combines the same basic building blocks to create mechanisms that are 

differentiable, allowing them to be optimized using gradient descent
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https://www.facebook.com/yann.lecun/posts/10155003011462143


RegretNet (and other, similar networks)

Focus on optimal auctions: DSIC (i.e., strategyproof) & revenue 
maximizing

Dütting et al, “Optimal Auctions Through Deep Learning”: 
parameterize auction mechanism (function f from bids to 
winners/payments in previous slide) as deep neural network:

• Maximization of revenue à include a revenue term in the loss 
function during training

• Strategyproofness constraint à compute strategic inputs via 
gradient ascent, train on these to reduce how much 
strategyproofness is violated
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Estimating Regret

Just do gradient ascent on utility!
Networks and inputs relatively small, so can do many steps (25 train 
time, 1000 test time)
• (Easily implemented in PyTorch by just setting 
requires_grad=True on input tensors)

Given f and a draw vi, how to compute 𝑚𝑎𝑥
𝒃!

𝑢% 𝒃% , 𝒗'% − 𝑢% 𝒗% , 𝒗'% ?

𝛻𝒃!𝑢#(𝒃#, 𝒗$#)arg𝑚𝑎𝑥
𝒃'

rgt!(𝒗!) ≈
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Learning Procedure

Dataset is a large number of randomly sampled valuation profiles 𝒗
• Our end goal is a strategyproof mechanism; if we have that, agents 

bid truthfully; so, only need to ensure regret = 0 on truthful bids!

Loss on a single valuation profile:

Minimize L by minibatch SGD, just like any neural network

𝐿(𝒗, 𝑓(𝒗)) = −∑
2
𝑝2 + ∑

2
𝜆2rgt2(𝒗) +

3
4 ∑

2
rgt2(𝒗)

4

Penalize low profit Penalize high regret
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Successful Results

Dotted lines denote theoretically optimal mechanism; orange/red is what neural networks learned after training
16



Successful Results

Their approach also beats a variety of strong baselines 
in more complicated situations where the optimal 
mechanism is not known.
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New Takes on Differentiable Economics

ProportionNet: Balancing Fairness and Revenue For Auction Design 
With Deep Learning (u.r. 2021)
• Impose fairness constraints on allocations
Certifying Strategyproof Auction Networks (NeurIPS 2020)
• Compute regret exactly — no gradient-based approximation
Learning Revenue-Maximizing Auctions With Differentiable Matching 
(u.r. 2021)
• Sinkhorn algorithm to perform differentiable matching; allows for 

new demand types (e.g., k-unit demand)
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Curry*, Chiang*, Goldstein, Dickerson. Certifying Strategyproof Auction Networks. NeurIPS-20.
Kuo*, Ostuni*, Horishny*, Curry*, Dooley*, Chiang*, Goldstein, Dickerson. ProportionNet: Balancing Fairness and Revenue for Auction Design with Deep Learning. Under review, 2021.

Curry*, Lyi*, Goldstein, Dickerson. Learning Revenue-Maximizing Auctions With Differentiable Matching. Under review, 2021.



ProportionNet



Unfairness in Advertising

Recent work showcases discrimination in online advertising
• Google displayed job listings of a higher income to men, and lower income 

job listings to women [Datta et al. 2015].
• Facebook sent ads discriminating on gender regardless of advertiser 

preferences [Muhammad et al. 2019].
• Online ads have been shown to discriminate on race, history of drug use, 

parent status, etc [Chawla et al. 2020].

Unintentional, but not necessarily inevitable.
New Goal: prevent unfair* allocations between users.

20*for some definition of “unfair” – this is, of course, a morally-laden step to take and deciding on which definition of fairness, if 
any, should be incorporated into an automated decisioning system is one that should, necessarily, involve stakeholder discussion.



A Specific Application of Auction Design

Auctions are used by many platforms to 
decide online ad allocations. 
• Advertiser i bids for a user j, and the 

auctioneer allocates users (i.e., 
“items”) depending on bids.
• Other qualities, such as relevancy, 

impact allocation decisions as well.
We would like to prevent these 
allocations from inducing unfairness.

21

Past real-world experimentation 
surfaces that online advertising 
systems show ads (e.g., career 
advancement opportunities) at different 
rates to equally-qualified individuals.



Our Definition of Fairness
Total Variation Fairness: users who are similar should be allocated advertisements 
similarly [Dwork+ 2012, Chawla+ 2020].
• The more similar users are, the smaller their distance D. Similar users must be 

treated similarly.
Between two users j and j’, the allocation vector z is fair if:

For our setting: D should take into account relevant differences but ignore differences 
in protected attributes. 

We use total variation fairness as an example. However, again, what constitutes “fair” is 
up to the auctioneer and other stakeholders impacted by the system.
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ProportionNet’s Loss Function
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RegretNet-style loss:

(Network architecture and training can stay the same — we are still enforcing 
strategyproofness and maximizing revenue.)

Total Variation Fairness:

ProportionNet loss:



Results from original RegretNet
(Unit demand, U[2,3], 2 items):

ProportionNet in same setting 
with increasingly strong 
fairness constraints:

Sample Results

24
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ProportionNet: Discussion
We present one way to learn auctions with fairness constraints on allocations.
• Amenable to user “knob turning” – with regard to the intensity of the fairness 

regularizer & the definition of fairness itself.

Measuring expected unfairness can’t be done directly (we must estimate from 
samples of valuation profiles).
• Similar to Dütting [2019], we can bound generalization error & show that our 

sample estimate is a good upper bound of true expected unfairness

Our model of fairness is motivated by real advertising auctions, but it is still 
extremely stylized. Discussion with real policymakers and stakeholders is 
important.
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Certifying 
Strategyproof 
Auction 
Networks
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Limitation of RegretNet (& ProportonNet)

The RegretNet family is concerned with minimizing regret.
• Gradient-based approximation: good for training, but may 

underestimate regret.

We would rather compute regret exactly — but how?
• Integer programming (ILP) techniques from robustness literature
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ILP for Neural Networks
Modern neural networks are mostly 
piecewise linear (ReLU)

• It is possible to embed them into 
integer programs using big-M 
formulation for nonlinear activations

One can then maximize over inputs

• Often: worst-case adversarial image

• Our case: highest-regret bid
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Challenge: Allocation Constraints

RegretNet uses a softmax to enforce 
allocation constraints (must sum to 1).
• No way to get rid of it, but can’t fit 

directly into integer linear program.
Solution: replace with sparsemax
• Formulate as optimization problem 

(projection), embed KKT conditions 
as additional constraints

29
(technically SOS1 not linear but still easy to deal with...)



Challenge: Individual Rationality

RegretNet’s architecture enforces individual rationality exactly
• In an ILP, this is a (nonconvex) bilinear equality constraint (product 

of two disjoint variables, i.e., “charge payment iff allocated item”).

Two solutions we’ve tried:
• Eliminate it and add a penalty term to encourage IR instead.
• Surprisingly, the newest version of Gurobi* can deal with these …

30* Gurobi 9.1 and later: “Bilinear constraints are a special case of non-convex quadratic constraints, and the 
algorithms Gurobi uses to handle the latter are also well suited to solving bilinear programming problems.”



Experimental Results: Certifying RegretNet
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2 items, 1 bidder, normal RegretNet: blue circles are truthful 
bids, red circles are (non-truthful) bids that result in gain 

>0.005 computed by our certifier.

Comparison of empirical regret (computed via ”normal” 
gradient-based approximation a la RegretNet) to our certified 

regret, under hard IR and regularized IR training.



Certifying Auction Networks: Discussion

RegretNet’s gradient-based approximate computation underestimates
regret à will not reach global optimality
We can produce bounds on the maximum regret a player could suffer 
under a particular valuation profile
• Nice to maintain provable properties with deep learned mechanisms!
Scalability remains an issue (but our ILP solution method is relatively 
naïve)
Local bounds only – but enough local bounds do guarantee global 
properties “with high probability” – future work is global bounds on regret
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Learning Revenue-
Maximizing Auctions 
With Differentiable 
Matching
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RegretNet: Feasible Allocation via Softmax

Feasibility of final allocation matrix is enforced via a mixture of softmaxes
and mins (e.g., to prevent over-allocation) at output layer
• Structure is dependent on the demand type of bidders

Example (unit-demand), where bidders want at most one item:
• Softmax over rows (allocate at most 1 mass of any single item)
• Softmax over cols (allocate at most 1 “item mass” to a bidder)
• Min over both enforces the unit-demand constraint

Combinatorial setting is similar, but needs separate output head for every 
possible bundle of items (= very large!)
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Feasible Allocation via Matching LP?

Feasible allocation of items to bidders is just a bipartite matching
Formulate as a (discrete) optimal transport problem:
• “Move a set of masses to another place while minimizing cost”
• Discrete version is a minimum cost bipartite matching!

35

1. Agents bid on items
2. Inputs to feedforward network(s)
3. Outputs become cost matrix for OT
4. OT gives (approximate) permutation 

matrix, yielding allocation and charging 
agents payment based on value of items



Training

Lots of ways to solve discrete OT; we use the Sinkhorn algorithm:
• Iterative, GPU-parallelizable solution method (for entropy 

regularized version OT problems)

Forward pass: Sinkhorn algorithm
Backward pass: use autodiff to backprop through several iterations 
of numerical operations of that iterative algorithm!
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Sample 
Results
2 items, 1 bidder, valuations 
drawn independently from 
U[0,1] for two cases:
• Unit demand (right), which 

can be represented by 
RegretNet

• Exactly-one demand (left), 
which cannot!  Optimal 
mechanism due to Kash & 
Frongillo [2016].
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Conclusions & Final Thoughts

Differentiable economics is a new view on a classic set of problems
• Scalability, training, generalization bounds, etc

Can be viewed as a tool to push theory forward!
• Can use this to “guess” analytic best mechanisms

Everything is differentiable à could wrap this into an RL setting …
• (Would want to get a better grip on single-shot scalability first.)
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Thanks!
More information:

jpdickerson.com

Funding & support:

Joint work with:

Code:

/imkevinkuo/proportionnet-pytorch

/urolyi1/MechanismDesign
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