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ANNOUNCEMENTS
Short project summaries:
• Were due to John before Spring Break

• Still working through them, will send out comments this week.
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−1020

(Possibly) Infinite duration games played by two
players, min and max, on a finite weighted 
directed graph.
Vertices of the graph divided among min, max and 
rand.
Edges emanating from min and max vertices, also 
called actions, have costs (or payoff)
Edges emanating from rand vertices have 
probabilities that sum up to 1.
There might be a sink, aka, a state with actions 
that lead only back to itself

Uri Zwick

TURN-BASED STOCHASTIC 
GAMES (TBSGS)
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TURN-BASED STOCHASTIC 
GAMES (TBSGS)
Game is played as follows:
• A token is placed on an initial vertex.
• If the token is in a min/max vertex, 

then min/max chooses an action.
• If the token is in a rand vertex, 

a random choice is made.
• If the token reaches a sink,

the game ends.
• The result is an (infinite) sequence 

of costs (or rewards):   𝑐!, 𝑐", 𝑐#, …

−1020
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Total cost – finite horizon
min/max 𝔼 ∑!"#$ 𝑐!

Discounted cost
min/max 𝔼 ∑!"#% 𝜆!𝑐!

Limiting average cost
min/max 𝔼 lim

$→%

'
$
∑!"#$(' 𝑐!

Total cost – infinite horizon
min/max 𝔼 ∑!"#% 𝑐!

TURN-BASED STOCHASTIC 
GAMES (TBSGS)
Objective function?

Uri Zwick

−1020
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Backgammon is a TBSG.

A single cost/reward of +1 or −1 in the last move.
A huge number of vertices/states.

Think back: can it be solved in polynomial time in the 
number of states ??????????

Author: Ptkfgs
Wikimedia Commons

BACKGAMMON

Uri Zwick

Stochasticity: dice rolls dictate legal states
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Chess is a deterministic TBSG.

A single cost/reward of −1, 0 or +1 in the last move.
Finite?  “Threefold repetition of position”

Attribution: Bubba73 
at English Wikipedia

CHESS
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LET’S START EVEN EASIER …
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ONE-PLAYER STOCHASTIC GAMES 
AKA

MARKOV DECISION PROCESSES

Slide credits: CMU AI and http://ai.berkeley.edu
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NON-DETERMINISTIC SEARCH
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EXAMPLE: GRID WORLD
§ A maze-like problem

§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ If agent takes action North

§ 80%  of the time: Get to the cell on the North
(if there is no wall there)

§ 10%: West; 10%: East
§ If path after roll dice blocked by wall, stays put

§ The agent receives rewards each time step
§ “Living” reward (can be negative)
§ Additional reward at pit or target (good or bad) and will exit the grid world afterward

§ Goal: maximize sum of rewards 11



GRID WORLD ACTIONS

Deterministic Grid World Stochastic Grid World
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MARKOV DECISION 
PROCESS (MDP)

An MDP is defined by a tuple (S,A,T,R):
• S: a set of states
• A: a set of actions
• T: a transition function

• T(s, a, s’) where s Î S, a Î A, s’ Î S is P(s’| s, a) 
• R: a reward function

• R(s, a, s’) is reward at this time step
• Sometimes just R(s) or R(s’)

• Sometimes also have
• 𝛾: discount factor (introduced later)
• 𝜇: distribution of initial state (or just start state 𝑠!)
• Terminal states: processes end after 

reaching these states

R(𝑠),+, 𝑒𝑥𝑖𝑡, 𝑠,!-./01_.3-4!501)=-1
R(𝑠),+)=-1, no virtual terminal state

The Grid World problem as an MDP

How to define the terminal states & reward function for the Grid World problem? 13



MARKOV DECISION 
PROCESS (MDP)

An MDP is defined by a tuple (S,A,T,R)

Why is it called Markov Decision Process?

Decision:

Process:
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MARKOV DECISION 
PROCESS (MDP)

An MDP is defined by a tuple (S,A,T,R)

Why is it called Markov Decision Process?

Decision:

Process:

Agent decides what action to take at each time step

The system (environment + agent) is changing over time
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WHAT IS “MARKOVIAN” 
ABOUT MDPS?

Markov property: Conditional on the present state, the 
future and the past are independent

With respect to MDPs, it means outcome of an action 
depend only on current state

Andrey Markov
(1856-1922)

Russian 
mathematician
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POLICIES
In deterministic single-agent search problems, we wanted an optimal plan, or 
sequence of actions, from start to a goal

For MDPs, we focus on policies
• Policy = map of states to actions
• p(s) gives an action for state s

We want an optimal policy p*: S → A
• An optimal policy is one that maximizes

expected utility if followed
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POLICIES
Recall: An MDP is defined S,A,T,R

Keep S,A,T fixed, optimal policy may vary given different R

What is the optimal policy if R(s,a,s’)=-1000 for 
all states other than pit and target?

What is the optimal policy if R(s,a,s’)=0 for all 
states other than pit and target, and 
reward=1000 and -1000 at pit and target 
respectively?
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{A, B, C, D} are optimal policies for one of each of the following 
“reward for living” scenarios: {-0.01, -0.03, -0.04, -2.0}.
Which policy maps to which reward setting?

I. {B, A, C, D}
II. {B, C, A, D}
III. {C, B, A, D}
IV. {D, A, C, B}

DISCUSSION POINT!

D)

A)

C)

B)
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{A, B, C, D} are optimal policies for one of each of the following 
“reward for living” scenarios: {-0.01, -0.03, -0.04, -2.0}.
Which policy maps to which reward setting?

I. {B, A, C, D}
II. {B, C, A, D}
III. {C, B, A, D}
IV. {D, A, C, B}

DISCUSSION POINT!

D)

A)

C)

B)
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DISCUSSION POINT!  POLICIES

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01
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EXAMPLE: RACING
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EXAMPLE: RACING
A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10
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RACING SEARCH TREE
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MDP SEARCH TREES
Each MDP state projects a search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-state
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UTILITIES OF SEQUENCES
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UTILITIES OF SEQUENCES
What preferences should an agent have over reward 
sequences?

More or less?

Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

27



DISCOUNTING
It’s reasonable to maximize the sum of rewards
It’s also reasonable to prefer rewards now to rewards later
One solution: utility of rewards decay exponentially

28

Worth Now Worth Next Step Worth In Two Steps



DISCOUNTING
How to discount?

• Each time we descend a level, we 
multiply in the discount once

Why discount?
• Sooner rewards probably do have 

higher utility than later rewards
• Also helps our algorithms converge

29



DISCUSSION POINT!
What is the value of U([2,4,8]) with 𝛾 = 0.5 ???????????????
( U(⋅) is the total utility of a reward sequence. )

• 3
• 6
• 7
• 14

Bonus: What is the value of U([8,4,2]) with 𝛄 = 𝟎. 𝟓 ?????????????
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DISCUSSION POINT!
What is the value of U([2,4,8]) with 𝛾 = 0.5 ???????????????
( U(⋅) is the total utility of a reward sequence. )

• 3
• 6
• 7
• 14

Bonus: What is the value of U([8,4,2]) with 𝛄 = 𝟎. 𝟓 ?????????????

31

𝛾#×2 + 𝛾'×4 + 𝛾+×8 = 2 + 0.5×4 + 0.5×0.5×8 = 2 + 2 + 2 = 6

𝛾#×8 + 𝛾'×4 + 𝛾+×2 = 8 + 0.5×4 + 0.5×0.5×2 = 8 + 2 + 0.5 = 10.5



STATIONARY PREFERENCES
Theorem: if we assume stationary preferences:

Then: there are only two ways to define utilities

• Additive utility:

• Discounted utility:
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INFINITE UTILITIES?!
Problem: What if the game lasts forever?  Do we get infinite rewards?

Solutions:
• Finite horizon: (similar to depth-limited search)

• Terminate episodes after a fixed T steps (e.g. life)
• Gives nonstationary policies (p depends on time left)

• Discounting: use 0 < g < 1

• Smaller g means smaller “horizon” – shorter term focus

• Absorbing state: guarantee that for every policy, a terminal state will eventually be 
reached (like “overheated” for racing)
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OPTIMAL POLICY WITH 
DISCOUNTING
Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

For 𝛾 = 1, what is the optimal policy?
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OPTIMAL POLICY WITH 
DISCOUNTING
Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

For 𝛾 = 1, what is the optimal policy?
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OPTIMAL POLICY WITH 
DISCOUNTING
Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

For 𝛾 = 1, what is the optimal policy?

For 𝛾 = 0.1, what is the optimal policy?
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OPTIMAL POLICY WITH 
DISCOUNTING
Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

For 𝛾 = 1, what is the optimal policy?

For 𝛾 = 0.1, what is the optimal policy?
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OPTIMAL POLICY WITH 
DISCOUNTING
Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

For 𝛾 = 1, what is the optimal policy?

For 𝛾 = 0.1, what is the optimal policy?

For which 𝛾 are West and East equally good when in state d?
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OPTIMAL POLICY WITH 
DISCOUNTING
Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

For 𝛾 = 1, what is the optimal policy?

For 𝛾 = 0.1, what is the optimal policy?

For which 𝛾 are West and East equally good when in state d?

39

𝛾6×10 = 𝛾'×1



MDP QUANTITIES (SO FAR!)
Markov decision processes:

• States S
• Actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)
• Start state s0

MDP quantities so far:
• Policy = map of states to actions
• Utility = sum of (discounted) rewards

40

a

s

s, a

s,a,s’
s’



SOLVING MDPS
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MDP QUANTITIES
Markov decision processes:

• States S
• Actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)
• Start state s0

MDP quantities:
• Policy = map of states to actions
• Utility = sum of (discounted) rewards
• (State) Value = expected utility starting from a state (max node)
• Q-Value = expected utility starting from a state-action pair, i.e., q-state (chance node)

a

s

s, a

s,a,s’
s’
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MDP OPTIMAL QUANTITIES
The optimal policy:

• p*(s) = optimal action from state s

The (true) value (or utility) of a state s:
• V*(s) = expected utility starting in s and acting optimally

The (true) value (or utility) of a q-state (s,a):
• Q*(s,a) = expected utility starting out having taken action a from state s and 

(thereafter) acting optimally

43

a

s

s, a

s,a,s’
s’

Solve MDP: Find 𝜋∗, 𝑉∗ and/or 𝑄∗

(s,a,s’) is a 
transition

s is a 
state

(s, a) is a 
q-state



EXAMPLES WHERE WE ASSUME 
WE HAVE V AND Q VALUES …
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GRIDWORLD V VALUES

Noise = 0
Discount = 1
Living reward = 0
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GRIDWORLD Q VALUES

Noise = 0
Discount = 1
Living reward = 0
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GRIDWORLD V VALUES

Noise = 0.2
Discount = 1
Living reward = 0
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GRIDWORLD Q VALUES

Noise = 0.2
Discount = 1
Living reward = 0
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GRIDWORLD V VALUES

Noise = 0.2
Discount = 0.9
Living reward = 0
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GRIDWORLD Q VALUES

Noise = 0.2
Discount = 0.9
Living reward = 0
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GRIDWORLD V VALUES

Noise = 0.2
Discount = 0.9
Living reward = -0.1
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GRIDWORLD Q VALUES

Noise = 0.2
Discount = 0.9
Living reward = -0.1
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COMPUTING OPTIMAL POLICY 
FROM VALUES
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COMPUTING OPTIMAL POLICY 
FROM VALUES
Let’s imagine we have the optimal values V*(s)

How should we act?

We need to do a mini-expectimax (one step)

Sometimes this is called policy extraction, since it gets the 
policy implied by the values

54

a

s

s, a

s,a,s’
s’



COMPUTING OPTIMAL POLICY 
FROM Q-VALUES
Let’s imagine we have the optimal q-values:

How should we act?
• Completely trivial to decide!

Important lesson: actions are easier to select from q-values than values!

55So, how do we compute these state values and q-values?



THE BELLMAN EQUATIONS

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

56



BELLMAN EQUATIONS: THE 
VALUE OF A STATE
Fundamental operation: compute the (expectimax) value of a state

• Expected utility under optimal action
• Average sum of (discounted) rewards

Recursive definition of value: a

s

s, a

s,a,s’
s’
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RACING SEARCH TREE
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RACING SEARCH TREE

Enumerate all paths, determine value of each path, choose path with highest value (aka expectimax)…? 59



RACING SEARCH TREE
We’re doing way too much work 
with expectimax!

Problem: States are repeated 
• Idea: Only compute needed 

quantities once

Problem: Tree goes on forever
• Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small

• Note: deep parts of the tree 
eventually don’t matter if γ < 1

60



TIME-LIMITED VALUES
Key idea: time-limited values

Define Vk(s) to be the optimal value of s if the game ends in k 
more time steps

• Equivalently, it’s what a depth-k expectimax would give from s

61



K=0

Noise = 0.2
Discount = 0.9
Living reward = 0

(Also watch the actions change as we go along.)
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K=1

Noise = 0.2
Discount = 0.9
Living reward = 0 63



K=2

Noise = 0.2
Discount = 0.9
Living reward = 0 64



K=3

Noise = 0.2
Discount = 0.9
Living reward = 0 65



K=4

Noise = 0.2
Discount = 0.9
Living reward = 0 66



K=5

Noise = 0.2
Discount = 0.9
Living reward = 0 67



K=6

Noise = 0.2
Discount = 0.9
Living reward = 0 68



K=7

Noise = 0.2
Discount = 0.9
Living reward = 0 69



K=8

Noise = 0.2
Discount = 0.9
Living reward = 0 70



K=9

Noise = 0.2
Discount = 0.9
Living reward = 0 71



K=10

Noise = 0.2
Discount = 0.9
Living reward = 0 72



K=11

Noise = 0.2
Discount = 0.9
Living reward = 0 73



K=12

Noise = 0.2
Discount = 0.9
Living reward = 0 74



K=100

Noise = 0.2
Discount = 0.9
Living reward = 0 75



COMPUTING TIME-LIMITED VALUES
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VALUE ITERATION
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VALUE ITERATION
Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

Complexity of each iteration:    ???????????????
• O(S2A)

Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)
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VALUE ITERATION
function VALUE-ITERATION(MDP=(S,A,T,R,8), ?ℎ[<:ℎ\]^) returns a state value function

for s in S
X&(:) ← 0

b ← 0
repeat

c ← 0
for s in S
Xde( : ← −∞
for a in A

g ← 0
for s’ in S

g ← g + h :, i, :j (k :, i, :j + 8Xd(:′))
Xde( : ← max{Xde( : , g}

c ← max{c, |Xde( : − Xd : |}
b ← b + 1

until c < ?ℎ[<:ℎ\]^
return Xd6(

Do we really need to store the 
value of Xd for each b ??????

Does Xde( : ≥ Xd(:) always hold 
????????????????
No. If h :, i, :j = 1 and k :, i, :j

< 0, then X( : = k :, i, :j < 0

No. Use X = XEDtB and Xj = XuCAAGIB
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EXAMPLE: VALUE ITERATION

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!
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BELLMAN EQUATION VS VALUE 
ITERATION VS BELLMAN UPDATE
Bellman equations characterize the optimal values:

Value iteration computes them by applying Bellman update repeatedly

Value iteration is a method for solving Bellman Equation
𝑉$ vectors are also interpretable as time-limited values
Value iteration finds the fixed point of the function

a

s

s, a

s,a,s’

𝑓 𝑉 = max
0
9
89

𝑇 𝑠, 𝑎, 𝑠9 [𝑅 𝑠, 𝑎, 𝑠9 + 𝛾𝑉(𝑠9)]
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CONVERGENCE
How do we know the Vk vectors are going to converge?

Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

Case 2: If the discount is less than 1
• Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge
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OTHER WAYS TO SOLVE 
BELLMAN EQUATION?

Treat 𝑉∗ 𝑠 as variables
Solve Bellman Equation through Linear Programming
Basic idea ????????
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V ⇤(s) = max
a

X

s0

T (s, a, s0) [R(s, a, s0) + �V ⇤(s0)]

<latexit sha1_base64="uTYQz49lXr8rCtLnMOUoJYlqIPA=">AAACOHicbVBdSxtBFJ2Ntk3Tr7R97MvQUJJYCbulxb4UQn3QN1MxiZBdl7uT2WRwZneZuSuGJf+kz/0HffFn+CaC+KAUX/sLnCQiVntg4HDOudy5J8qkMOi6J05pafnR4yflp5Vnz1+8fFV9/aZn0lwz3mWpTPVuBIZLkfAuCpR8N9McVCR5P9pfn/n9A66NSJMdnGQ8UDBKRCwYoJXC6lZvb6VhmvQb9RUchgVMqW9yFRamPqU7DbMKq6bepL7kMQ7o9q3wkfojUArofH6W0GI0xiCs1tyWOwd9SLwbUmtvsLOfpeavTlg99ocpyxVPkEkwZuC5GQYFaBRM8mnFzw3PgO3DiA8sTUBxExTzw6f0g1WGNE61fQnSuXp3ogBlzERFNqkAx+a+NxP/5w1yjL8GhUiyHHnCFoviXFJM6axFOhSaM5QTS4BpYf9K2Rg0MLRdV2wJ3v2TH5Lep5b3ufXlh23jO1mgTN6R96RBPLJG2mSTdEiXMPKbnJILcukcOefOH+dqES05NzNvyT9w/l4DNXardQ==</latexit>

V ⇤(s) � max
a

X

s0

T (s, a, s0) [R(s, a, s0) + �V ⇤(s0)]

<latexit sha1_base64="XRX97VzG1/k4PcYC61dz/afrznk="></latexit>

(|A| constraints, one per action a)

V ⇤(s) �
X

s0

T (s, a, s0) [R(s, a, s0) + �V ⇤(s0)]

<latexit sha1_base64="gNm1mqQLLMOOSxIepmkcx6F11Sg="></latexit>



SOLVING BELLMAN EQUATIONS 
USING LINEAR PROGRAMMING
Full linear program:

Why is this right   ??????????
Assume not: after LP, suppose there exists a state s with strictly higher value:

(That is, minimizing the sum of values of states didn’t bind to equality.)
Then we can find a better (i.e., lower) solution with only V(s) changed to make this an 
equality
• All constraints for the other states are valid because their RHS only goes down!  ><

84

min
:∗

9
8

𝑉∗(𝑠)

s.t. 𝑉∗ 𝑠 ≥ ∑89𝑇 𝑠, 𝑎, 𝑠9 [𝑅 𝑠, 𝑎, 𝑠9 + 𝛾𝑉∗(𝑠9)] ∀𝑠, 𝑎

V ⇤(s) > max
a

X

s0

T (s, a, s0) [R(s, a, s0) + �V ⇤(s0)]

<latexit sha1_base64="2JMWqIXP1rZ/T4vPBX3NvQewE5E="></latexit>



COOL THINGS ABOUT THE LP 
SOLUTION FOR BELLMAN EQUATIONS
1. Proof from previous slide holds if we optimize any linear function of V(s)!  E.g.,

Would still find optimal policy, but the objective would represent the expected 
cumulative reward when the initial state is drawn as p(s).

2. A “canonical” form of the dual simplex method is equivalent to policy iteration

3. Not the fastest method (specialized policy iteration methods often are), but can 
give nice bounds for e.g. state abstractions in large MDP solving
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min
V ⇤

X

s

p(s)V ⇤(s)

<latexit sha1_base64="tzM/bCTARqWcyKXIZhPx9JPA5wU=">AAACBnicbVDLSgMxFM3UV62vUZciBItQXZQZqeiy6MZlBfuAzjhk0kwbmmSGJCOUoSs3/oobF4q49Rvc+Tem7Sy09cDlHs65l+SeMGFUacf5tgpLyyura8X10sbm1vaOvbvXUnEqMWnimMWyEyJFGBWkqalmpJNIgnjISDscXk/89gORisbiTo8S4nPUFzSiGGkjBfahx6kIstb96Rh6KuWBgklFnUAjmBbYZafqTAEXiZuTMsjRCOwvrxfjlBOhMUNKdV0n0X6GpKaYkXHJSxVJEB6iPukaKhAnys+mZ4zhsVF6MIqlKaHhVP29kSGu1IiHZpIjPVDz3kT8z+umOrr0MyqSVBOBZw9FKYM6hpNMYI9KgjUbGYKwpOavEA+QRFib5EomBHf+5EXSOqu6ter5ba1cv8rjKIIDcAQqwAUXoA5uQAM0AQaP4Bm8gjfryXqx3q2P2WjBynf2wR9Ynz/GwJdj</latexit>



POLICY ITERATION FOR 
SOLVING MDPS
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POLICY EVALUATION
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FIXED POLICIES

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy p(s), then the tree would be simpler – only one action per 
state … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s,
p(s),s’ s’

Do the optimal action Do what p says to do
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UTILITIES FOR A FIXED 
POLICY
Another basic operation: compute the utility of a state s under a fixed (generally 
non-optimal) policy

Define the utility of a state s, under a fixed policy p:
• Vp(s) = expected total discounted rewards starting in s and following p

Recursive relation (one-step look-ahead / Bellman equation):

p(s)

s

s, p(s)

s,
p(s),s’ s’

89



COMPARE
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RECALL: MDP OPTIMAL QUANTITIES
A policy 𝜋: map of states to actions
• The optimal policy p*: p*(s) = optimal action 

from state s

Value function of a policy 𝑉1 𝑠 : expected utility 
starting in s and acting according to 𝜋
• Optimal value function V*: V*(s) = 𝑉1∗ 𝑠

Q function of a policy Q1 𝑠 : expected utility 
starting out having taken action a from state s 
and (thereafter) acting according to 𝜋
• Optimal Q function Q* : Q*(s,a) = Q1∗ 𝑠

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
state-action 
pair

Solve MDP: Find 𝜋∗, 𝑉∗ and/or 𝑄∗ 91



EXAMPLE: POLICY EVALUATION
Always Go Right Always Go Forward
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EXAMPLE: POLICY EVALUATION
Always Go Right Always Go Forward
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POLICY EVALUATION
How do we calculate the V’s for a fixed policy p?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

O(|S2|) time per iteration

p(s)

s

s, p(s)

s, p(s),s’
s’
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POLICY EVALUATION
Idea 2: Bellman Equation w.r.t. a given policy 𝜋 defines a linear system

• Solve with your favorite linear system solver!

|S| variables – each state has a unique value under a policy 𝜋
|S| constraints – one equality per state to compute that state’s value
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POLICY ITERATION
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PROBLEMS WITH VALUE 
ITERATION
Value iteration repeats the Bellman updates:

Problem 1: It’s slow – O( 𝑆 #|𝐴|) per iteration

Problem 2: The “max” at each state rarely changes

Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’
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K=0

Noise = 0.2
Discount = 0.9
Living reward = 0

Compare: values of states versus policy (i.e., 
“arrows in the boxes”) over many iterations
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K=1

Noise = 0.2
Discount = 0.9
Living reward = 0 99
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K=11
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K=12
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POLICY ITERATION
Alternative approach for optimal values:
• Step 1: Policy evaluation: calculate utilities for some fixed policy (may not be optimal!) 

until convergence

• Step 2: Policy improvement: update policy using one-step look-ahead with resulting 
converged (but not optimal!) utilities as future values

• Repeat steps until policy converges

This is policy iteration:
• It’s still optimal!

• Can converge (much) faster under some conditions

11
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POLICY ITERATION
Policy Evaluation: For fixed current policy p, find values w.r.t. the policy
• Iterate until values converge:

Policy Improvement: For fixed values, get a better policy with one-step look-
ahead:

Similar to how you derive optimal policy 𝜋∗ given optimal value 𝑉∗

11
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COMPARISON OF “VI” AND “PI”
Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because 

we consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)
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SUMMARY: MDP ALGORITHMS
So you want to….
• Turn values into a policy: use one-step lookahead

• Compute optimal values: use value iteration or policy iteration

• Compute values for a particular policy: use policy evaluation

These all look the same!
• They basically are – they are all variations of Bellman updates

• They all use one-step lookahead expectimax fragments

• They differ only in whether we plug in a fixed policy or max over actions

11
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FINAL SLIDE: MDP NOTATION
𝑉 𝑠 = max

&
9
'(

𝑃 𝑠( 𝑠, 𝑎)𝑉(𝑠()

𝑉 𝑠 = max
&
9
'(

𝑃 𝑠( 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠( + 𝛾𝑉 𝑠(

𝑉$)" 𝑠 = max
&
9
'(

𝑃 𝑠( 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠( + 𝛾𝑉$ 𝑠( , ∀ 𝑠

𝑄$)" 𝑠, 𝑎 =9
'(

𝑃 𝑠( 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠( + 𝛾max
&!

𝑄$(𝑠(, 𝑎()] , ∀ 𝑠, 𝑎

𝜋* 𝑠 = argmax
&

9
'(

𝑃 𝑠( 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠( + 𝛾𝑉 𝑠( ] , ∀ 𝑠

𝑉$)"+ 𝑠 =9
'(

𝑃 𝑠( 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠( + 𝛾𝑉$+ 𝑠( ] , ∀ 𝑠

𝜋,-. 𝑠 = argmax
&

9
'(

𝑃 𝑠( 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠( + 𝛾𝑉+"#$ 𝑠( , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:
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